Glutamate release correlates with brain-derived neurotrophic factor and trkB mRNA expression in the CA1 region of rat hippocampus. 1996

T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden.

Synthesis of the neurotrophic factor brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the hippocampus have been proposed to be influenced by endogenous glutamate. To test this hypothesis we have investigated if increases in BDNF and trkB mRNAs are associated with changes in the synaptic release of glutamate in the dorsal hippocampus in the conscious rat by combining the technique of in vivo microdialysis with in situ hybridization histochemistry. A 35% and 66% increase in extracellular levels of glutamate in the dorsal CA1 region was detected following injection into the lateral entorhinal cortex of 2.4 and 9.6 microg of the non-NMDA glutamate receptor agonist quisqualate, respectively. The increase in glutamate was attenuated by local administration of tetrodotoxin (TTX) indicating neuronal origin. Levels of BDNF and trkB mRNAs were increased in the hippocampus in a dose-dependent fashion following the stimulations. The extracellular levels of glutamate in individual animals correlated to the levels of BDNF and trkB mRNAs in the dorsal CA1 region of the hippocampus. This study provides for the first time evidence of an entorhinal cortex influenced concentration-dependent relationship between the release of endogenous glutamate in vivo and neuronal expression of mRNAs for BDNF and its receptor trkB in the hippocampus.

UI MeSH Term Description Entries
D008297 Male Males
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D017551 Microdialysis A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
January 2003, Journal of neuroscience research,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
September 2001, Molecular and cellular neurosciences,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
December 2000, Brain research. Molecular brain research,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
February 2004, Neuroscience letters,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
December 1998, Journal of neurophysiology,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
November 2002, The Journal of biological chemistry,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
January 2001, Journal of neuroscience research,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
October 2009, Journal of neurochemistry,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
April 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Falkenberg, and N Lindefors, and F Camilli, and M Metsis, and U Ungerstedt
June 1998, Experimental neurology,
Copied contents to your clipboard!