Correction of the DNA repair defect in Fanconi anemia complementation groups A and D cells. 1997

M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark 07103, USA. mlambert@umdnj.edu

We have previously isolated from Fanconi anemia, complementation groups A (FA-A) and D (FA-D) cells, a DNA endonuclease complex which is defective in its ability to incise DNA containing interstrand cross-links produced by psoralen plus UVA light. The repair capabilities of the FA complexes, compared with those of the corresponding normal complex, have now been examined using two types of complementation analysis. First, introduction of the normal complex, by electroporation, into 8-methoxypsoralen (8-MOP) plus UVA treated FA-A and FA-D cells resulted in correction of their repair defect, determined by measuring repair-related unscheduled DNA synthesis (UDS). The FA-A and FA-D complexes could similarly complement the repair defect in each others' cells, but not in their own. Second, mixing the normal with the FA-A and FA-D complexes, or the FA-A with the FA-D complex, in a cell-free system resulted in correction of the defect in ability of these FA complexes to incise damaged DNA. These results indicate that the normal complex contains the proteins needed to correct the DNA repair defect in FA-A and FA-D cells and that the FA-A and FA-D complexes contain the protein needed to complement the repair defect in each other.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D005199 Fanconi Anemia Congenital disorder affecting all bone marrow elements, resulting in ANEMIA; LEUKOPENIA; and THROMBOPENIA, and associated with cardiac, renal, and limb malformations as well as dermal pigmentary changes. Spontaneous CHROMOSOME BREAKAGE is a feature of this disease along with predisposition to LEUKEMIA. There are at least 7 complementation groups in Fanconi anemia: FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id Anemia, Fanconi,Fanconi Hypoplastic Anemia,Fanconi Pancytopenia,Fanconi Panmyelopathy,Fanconi's Anemia,Anemia, Fanconi's,Anemias, Fanconi,Fanconi Anemias
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018274 Electroporation A technique in which electric pulses, in kilovolts per centimeter and of microsecond-to-millisecond duration, cause a loss of the semipermeability of CELL MEMBRANES, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. Depending on the dosage, the formation of openings in the cell membranes caused by the electric pulses may or may not be reversible. Electric Field-Mediated Cell Permeabilization,Irreversible Electroporation,Reversible Electroporation,Electropermeabilisation,Electric Field Mediated Cell Permeabilization,Electroporation, Irreversible,Electroporation, Reversible

Related Publications

M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
December 2015, Current opinion in cell biology,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
January 1985, Somatic cell and molecular genetics,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
November 2002, The Journal of biological chemistry,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
October 2001, Human molecular genetics,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
December 2001, Experimental hematology,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
July 2007, DNA repair,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
June 2017, Pediatric radiology,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
September 1999, Carcinogenesis,
M W Lambert, and G J Tsongalis, and W C Lambert, and D D Parrish
September 2005, Nature genetics,
Copied contents to your clipboard!