Altered sensitivity of aspirin-acetylated prostaglandin G/H synthase-2 to inhibition by nonsteroidal anti-inflammatory drugs. 1997

J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Québec, Canada. mancini@merck.com

Aspirin (ASA) acetylates Ser516 of prostaglandin G/H synthase-2 (PGHS-2) resulting in a modified enzyme that converts arachidonic acid to 15(R)-hydroxy-eicosatetraeroic acid [15(R)-HETE]. ASA has pharmacological benefits that may not all be limited to inhibition of prostaglandin synthesis, and this study was initiated to further investigate the properties of ASA-acetylated PGHS-2 and of the mutation of Ser516 to methionine, which mimics ASA acetylation. Both the S516M mutant and ASA-acetylated form of PGHS-2 (ASA-PGHS-2) synthesize 15(R)-HETE and have apparent K(m) values for arachidonic acid within 10-fold of the apparent K(m) value for untreated PGHS-2. The time courses of turnover-dependent inactivation were similar for reactions catalyzed by PGHS-2 and ASA-PGHS-2, whereas the PGHS-2(S516M) showed a decrease in both the initial rate of 15-HETE production and rate of enzyme inactivation. The production of 15-HETE by modified PGHS-2 was sensitive to inhibition by most nonsteroidal anti-inflammatory drugs (NSAIDs), including selective PGHS-2 inhibitors. As observed for the cyclooxygenase activity of PGHS-2, the inhibition of 15-HETE production by indomethacin was time-dependent for both ASA-PGHS-2 and PGHS-2(S516M). However, two potent, structurally related NSAIDs, diclofenac and meclofenamic acid, do not inhibit either ASA-PGHS-2 or the PGHS-2(S516M) mutant. These results demonstrate that the sensitivity to inhibition by NSAIDs of the 15-HETE production by ASA-treated PGHS-2 is different than that of prostaglandin production by PGHS-2 and that Ser516 plays an important role in the interaction with fenamate inhibitors. The results also indicate that the conversion of arachidonic acid to 15-HETE by ASA-PGHS-2 is an efficient process providing a unique mechanism among NSAIDs that will not lead to arachidonic acid accumulation or shunting to other biosynthetic pathways.

UI MeSH Term Description Entries
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D001241 Aspirin The prototypical analgesic used in the treatment of mild to moderate pain. It has anti-inflammatory and antipyretic properties and acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5) Acetylsalicylic Acid,2-(Acetyloxy)benzoic Acid,Acetysal,Acylpyrin,Aloxiprimum,Colfarit,Dispril,Easprin,Ecotrin,Endosprin,Magnecyl,Micristin,Polopirin,Polopiryna,Solprin,Solupsan,Zorprin,Acid, Acetylsalicylic
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin
D019556 COS Cells CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CHLOROCEBUS AETHIOPS).) COS-1 Cells,COS-7 Cells,COS 1 Cells,COS 7 Cells,COS Cell,COS-1 Cell,COS-7 Cell,Cell, COS,Cell, COS-1,Cell, COS-7,Cells, COS,Cells, COS-1,Cells, COS-7

Related Publications

J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
January 2001, European journal of pharmacology,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
December 1997, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
October 2002, Journal of computer-aided molecular design,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
January 1987, Farmakologiia i toksikologiia,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
February 1994, Molecular pharmacology,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
November 1994, The Journal of pharmacology and experimental therapeutics,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
May 1995, Seminars in nephrology,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
November 1997, Molecular pharmacology,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
August 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
J A Mancini, and P J Vickers, and G P O'Neill, and C Boily, and J P Falgueyret, and D Riendeau
December 2002, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology,
Copied contents to your clipboard!