Leading versus lagging strand mutagenesis induced by 7,8-dihydro-8-oxo-2'-deoxyguanosine in Escherichia coli. 1997

J Wagner, and H Kamiya, and R P Fuchs
Cancérogenèse et Mutagenèse Moleculaire et Structurale, Unité Propre de Recherche (#9003) du Centre National de la Recherche Scientifique IRCAD, Hopitaux Universitaires, Strasbourg, France.

We have previously shown that a single N-2-acetylaminofluorene (AAF) adduct bound to the C-8 position of a guanine residue located within plasmids containing the unidirectional ColE1 origin of replication induces a 20-fold higher mutation frequency when the adduct is located in the lagging strand as compared to the leading strand. In this study, single 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesions have been introduced in the leading and lagging strand orientation within the same sequence context as for the AAF adducts. The induced frequency of guanine to thymine transversions has been measured, using a specific PCR-based quantitative assay, in strains deficient in the repair of the oxidative lesion. The potential involvement of the UvrABC excision repair system in the removal of 8-oxodG has also been investigated and ruled out. Concerning the mutation frequency asymmetry, in contrast to AAF adducts, 8-oxodG adducts induce the same mutation frequency, irrespective of their location in the leading or lagging strands. This striking difference between 8-oxodG and dGuo-C8-AAF adducts is discussed in terms of their differential capacity to block DNA replication.

UI MeSH Term Description Entries
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011755 Pyrophosphatases A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-. Pyrophosphatase
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

J Wagner, and H Kamiya, and R P Fuchs
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
J Wagner, and H Kamiya, and R P Fuchs
December 2010, The journal of physical chemistry. B,
J Wagner, and H Kamiya, and R P Fuchs
July 1995, Biochimica et biophysica acta,
J Wagner, and H Kamiya, and R P Fuchs
January 2018, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
J Wagner, and H Kamiya, and R P Fuchs
February 2001, Molecular & general genetics : MGG,
J Wagner, and H Kamiya, and R P Fuchs
December 2001, Free radical research,
J Wagner, and H Kamiya, and R P Fuchs
January 2018, Journal of environmental sciences (China),
Copied contents to your clipboard!