The effects of locomotor-respiratory coupling on the pattern of breathing in horses. 1996

C L Lafortuna, and E Reinach, and F Saibene
Istituto di Tecnologie Biomediche Avanzate del Consiglio Nazionale delle Ricerche, Milano, Italy.

1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory functions, which may play a role in the optimization and control of exercise ventilation in horses.

UI MeSH Term Description Entries
D006985 Hyperventilation A pulmonary ventilation rate faster than is metabolically necessary for the exchange of gases. It is the result of an increased frequency of breathing, an increased tidal volume, or a combination of both. It causes an excess intake of oxygen and the blowing off of carbon dioxide. Hyperventilations
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012123 Pulmonary Ventilation The total volume of gas inspired or expired per unit of time, usually measured in liters per minute. Respiratory Airflow,Ventilation Tests,Ventilation, Pulmonary,Expiratory Airflow,Airflow, Expiratory,Airflow, Respiratory,Test, Ventilation,Tests, Ventilation,Ventilation Test
D012126 Respiratory Dead Space That part of the RESPIRATORY TRACT or the air within the respiratory tract that does not exchange OXYGEN and CARBON DIOXIDE with pulmonary capillary blood. Dead Space, Respiratory,Dead Spaces, Respiratory,Respiratory Dead Spaces,Space, Respiratory Dead,Spaces, Respiratory Dead
D005684 Gait Manner or style of walking. Gaits
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C L Lafortuna, and E Reinach, and F Saibene
January 1995, The Japanese journal of physiology,
C L Lafortuna, and E Reinach, and F Saibene
April 1980, Journal of applied physiology: respiratory, environmental and exercise physiology,
C L Lafortuna, and E Reinach, and F Saibene
January 1976, Acta neurologica Belgica,
C L Lafortuna, and E Reinach, and F Saibene
June 2002, Respiratory physiology & neurobiology,
C L Lafortuna, and E Reinach, and F Saibene
November 1999, Journal of applied physiology (Bethesda, Md. : 1985),
C L Lafortuna, and E Reinach, and F Saibene
October 1997, Zentralblatt fur Veterinarmedizin. Reihe A,
C L Lafortuna, and E Reinach, and F Saibene
April 1992, Journal of applied physiology (Bethesda, Md. : 1985),
C L Lafortuna, and E Reinach, and F Saibene
January 1991, Journal de physiologie,
C L Lafortuna, and E Reinach, and F Saibene
August 1984, British journal of anaesthesia,
C L Lafortuna, and E Reinach, and F Saibene
December 2009, Advances in physiology education,
Copied contents to your clipboard!