Regulation of force and shortening velocity by calcium and myosin phosphorylation in chemically skinned smooth muscle. 1996

U Malmqvist, and A Arner
Dept. of Physiology and Neuroscience, Lund University, Sölvegatan 19, S-223 62 Lund, Sweden.

The phosphatase inhibitor okadaic acid (OA) was used to study the relationship between [Ca2+], rates of phosphorylation/dephosphorylation and the mechanical properties of smooth muscle fibres. Force/velocity relationships were determined with the isotonic quick release technique in chemically skinned guinea-pig taenia coli muscles at 22 degrees C. In the maximally thiophosphorylated muscle neither OA (10 microM) nor Ca2+ (increase from pCa 9.0 to pCa 4.5) influenced the force-velocity relationship. When the degree of activation was altered by varying [Ca2+] in the presence of 0.5 microM calmodulin, both force and the maximal shortening velocity (Vmax) were altered. At pCa 5.75, at which force was about 35% of the maximal at pCa 4.5, Vmax was 55% of the maximal value. When OA was introduced into fibres at pCa 6.0, force was increased from less than 5% to 100% of the maximal force obtained in pCa 4.5. The relationship between the degree of myosin light chain phosphorylation and force was similar in the two types of activation; varied [OA] at constant [Ca2+] and at varied [Ca2+]. The relation between force and Vmax when the degree of activation was altered with OA was almost identical to that obtained with varied [Ca2+]. The results show that Ca2+ and OA do not influence force or Vmax in the maximally phosphorylated state and suggest that the level of myosin light chain phosphorylation is the major factor determining Vmax. The finding that the relationship between force and Vmax was similar when activation was altered with OA and Ca2+ suggests, however, that alterations in the absolute rates of phosphorylation and dephosphorylation at a constant phosphorylation level do not influence the mechanical properties of the skinned smooth muscle fibres.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006652 Histological Techniques Methods of preparing tissue for examination and study of the origin, structure, function, or pathology. Histologic Technic,Histologic Technics,Histologic Technique,Histologic Techniques,Histological Technics,Technic, Histologic,Technics, Histologic,Technique, Histologic,Techniques, Histologic,Histological Technic,Histological Technique,Technic, Histological,Technics, Histological,Technique, Histological,Techniques, Histological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte

Related Publications

U Malmqvist, and A Arner
January 1990, Progress in clinical and biological research,
U Malmqvist, and A Arner
September 1985, The American journal of physiology,
U Malmqvist, and A Arner
April 1998, Journal of muscle research and cell motility,
U Malmqvist, and A Arner
November 1986, Pflugers Archiv : European journal of physiology,
U Malmqvist, and A Arner
July 1988, The American journal of physiology,
U Malmqvist, and A Arner
January 1987, Progress in clinical and biological research,
U Malmqvist, and A Arner
January 1989, Progress in clinical and biological research,
Copied contents to your clipboard!