Binding constants in the formation of mammalian protein synthesis initiation complexes and the role of mRNA. 1997

K L Manchester
Department of Biochemistry, University of the Witwatersrand, Johannesburg, South Africa.

The findings of Parkhurst et al. (Biochemistry 33, 15168-15177:1994) that a 10-mer oligoribonucleotide containing the AUG triplet enhances the binding of the eIF-2 x Met-tRNAi complex to the 40S ribosomal subunit are questioned on the basis of a re-evaluation of their calculations. It is not possible to conclude, as they did, that addition of the AUG-containing oligonucleotide produces an exceptionally large increase (as judged by the magnitude of the coupling free energy) in the binding of the eIF-2 x Met-tRNAi complex to the 40S subunit, or that their results are more consistent with internal initiation than with the scanning initiation model.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012358 RNA, Transfer, Met A transfer RNA which is specific for carrying methionine to sites on the ribosomes. During initiation of protein synthesis, tRNA(f)Met in prokaryotic cells and tRNA(i)Met in eukaryotic cells binds to the start codon (CODON, INITIATOR). Initiator tRNA,Methionine-Specific tRNA,Methionine-Specific tRNAm,RNA, Transfer, Initiator,Transfer RNA, Met,tRNA(f)Met,tRNA(i)Met,tRNA(m)Met,tRNAMet,tRNA(Met),Met Transfer RNA,Methionine Specific tRNA,Methionine Specific tRNAm,RNA, Met Transfer,tRNA, Initiator,tRNA, Methionine-Specific,tRNAm, Methionine-Specific

Related Publications

K L Manchester
September 1995, Biochemical and biophysical research communications,
K L Manchester
June 1980, Biochimica et biophysica acta,
K L Manchester
February 1971, Nature: New biology,
K L Manchester
May 1986, The Biochemical journal,
K L Manchester
August 1976, The Journal of investigative dermatology,
K L Manchester
October 1974, Proceedings of the National Academy of Sciences of the United States of America,
K L Manchester
January 1981, Progress in nucleic acid research and molecular biology,
Copied contents to your clipboard!