Molecular mechanism of polyamine stimulation of the synthesis of oligopeptide-binding protein. 1997

K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan.

Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA) was shown to occur mainly at the level of translation by measuring OppA synthesis and its mRNA level. Several artificial oppA genes were constructed by site-directed mutagenesis. These synthesize different kinds of OppA mRNAs: mRNAs differing in the size of 5'-untranslated region; mRNAs having the Shine-Dalgarno (SD) sequence in a different position; mRNAs having different secondary structure in the region of the SD sequence; and fusion mRNAs consisting of the 5'-untranslated region of OppA mRNA and the open reading frame of beta-galactosidase. By measuring the synthesis of OppA or beta-galactosidase from these mRNAs, we found that the 171-nucleotide 5'-untranslated region and 145 nucleotides of the ORF of OppA mRNA are involved in the polyamine stimulation of OppA synthesis. When the secondary structure of the above region of OppA mRNA was analyzed by optimal computer folding, it was shown that the degree of polyamine stimulation of OppA protein synthesis was dependent on the structure of the SD sequence in addition to its position. Loose base pairing of the SD sequence with other regions of the mRNA caused strong polyamine stimulation, while intense base pairing of the SD sequence with other regions of the mRNA resulted in insignificant or weak polyamine stimulation.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
May 1990, The Journal of biological chemistry,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
July 1992, Journal of bacteriology,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
January 1993, Archives of biochemistry and biophysics,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
November 2005, Memorias do Instituto Oswaldo Cruz,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
September 1968, Biochimica et biophysica acta,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
January 2018, Computational and mathematical methods in medicine,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
November 1986, Journal of bacteriology,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
November 1988, Journal of molecular biology,
K Igarashi, and T Saisho, and M Yuguchi, and K Kashiwagi
January 1997, Voprosy meditsinskoi khimii,
Copied contents to your clipboard!