MONSSTER: a method for folding globular proteins with a small number of distance restraints. 1997

J Skolnick, and A Kolinski, and A R Ortiz
Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA.

The MONSSTER (MOdeling of New Structures from Secondary and TEritary Restraints) method for folding of proteins using a small number of long-distance restraints (which can be up to seven times less than the total number of residues) and some knowledge of the secondary structure of regular fragments is described. The method employs a high-coordination lattice representation of the protein chain that incorporates a variety of potentials designed to produce protein-like behaviour. These include statistical preferences for secondary structure, side-chain burial interactions, and a hydrogen-bond potential. Using this algorithm, several globular proteins (1ctf, 2gbl, 2trx, 3fxn, 1mba, 1pcy and 6pti) have been folded to moderate-resolution, native-like compact states. For example, the 68 residue 1ctf molecule having ten loosely defined, long-range restraints was reproducibly obtained with a C alpha-backbone root-mean-square deviation (RMSD) from native of about 4. A. Flavodoxin with 35 restraints has been folded to structures whose average RMSD is 4.28 A. Furthermore, using just 20 restraints, myoglobin, which is a 146 residue helical protein, has been folded to structures whose average RMSD from native is 5.65 A. Plastocyanin with 25 long-range restraints adopts conformations whose average RMSD is 5.44 A. Possible applications of the proposed approach to the refinement of structures from NMR data, homology model-building and the determination of tertiary structure when the secondary structure and a small number of restraints are predicted are briefly discussed.

UI MeSH Term Description Entries
D007611 Aprotinin A single-chain polypeptide derived from bovine tissues consisting of 58 amino-acid residues. It is an inhibitor of proteolytic enzymes including CHYMOTRYPSIN; KALLIKREIN; PLASMIN; and TRYPSIN. It is used in the treatment of HEMORRHAGE associated with raised plasma concentrations of plasmin. It is also used to reduce blood loss and transfusion requirements in patients at high risk of major blood loss during and following open heart surgery with EXTRACORPOREAL CIRCULATION. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1995) BPTI, Basic Pancreatic Trypsin Inhibitor,Basic Pancreatic Trypsin Inhibitor,Bovine Kunitz Pancreatic Trypsin Inhibitor,Kallikrein-Trypsin Inactivator,Kunitz Pancreatic Trypsin Inhibitor,Trypsin Inhibitor, Basic, Pancreatic,Trypsin Inhibitor, Kunitz, Pancreatic,Antilysin,Bovine Pancreatic Trypsin Inhibitor,Contrical,Contrykal,Dilmintal,Iniprol,Kontrikal,Kontrykal,Pulmin,Traskolan,Trasylol,Zymofren,Inactivator, Kallikrein-Trypsin,Kallikrein Trypsin Inactivator
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D010970 Plastocyanin A copper-containing plant protein that is a fundamental link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds. Plastocyanine,Silver Plastocyanin,Plastocyanin, Silver
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003196 Computer Graphics The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation. Computer Graphic,Graphic, Computer,Graphics, Computer
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005418 Flavodoxin A low-molecular-weight (16,000) iron-free flavoprotein containing one molecule of flavin mononucleotide (FMN) and isolated from bacteria grown on an iron-deficient medium. It can replace ferredoxin in all the electron-transfer functions in which the latter is known to serve in bacterial cells.
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

J Skolnick, and A Kolinski, and A R Ortiz
August 1995, Journal of molecular biology,
J Skolnick, and A Kolinski, and A R Ortiz
January 2009, Proceedings of the National Academy of Sciences of the United States of America,
J Skolnick, and A Kolinski, and A R Ortiz
August 1993, Protein engineering,
J Skolnick, and A Kolinski, and A R Ortiz
July 1981, Proceedings of the National Academy of Sciences of the United States of America,
J Skolnick, and A Kolinski, and A R Ortiz
January 2013, Proceedings of the National Academy of Sciences of the United States of America,
J Skolnick, and A Kolinski, and A R Ortiz
June 2002, Journal of biological physics,
J Skolnick, and A Kolinski, and A R Ortiz
May 1998, Proceedings of the National Academy of Sciences of the United States of America,
J Skolnick, and A Kolinski, and A R Ortiz
January 1999, International journal of biological macromolecules,
J Skolnick, and A Kolinski, and A R Ortiz
February 2004, Journal of molecular biology,
J Skolnick, and A Kolinski, and A R Ortiz
March 1985, Biochemistry,
Copied contents to your clipboard!