Influence of microorganisms on the environmental fate of radionuclides. 1996

G M Gadd
University of Dundee.

Microorganisms have a significant influence on the environmental fate of radionuclides in aquatic and terrestrial ecosystems with a multiplicity of physico-chemical and biological mechanisms effecting changes in mobility and speciation. Physico-chemical mechanisms of removal include association with extracellular materials, metabolites and cell walls which are features of living and dead organisms. In living cells, some physico-chemical processes are reversible, influenced by metabolism and changing environmental conditions. Metabolism-dependent mechanisms of radionuclide immobilization include sulphide precipitation, transport and intracellular compartmentation and/or sequestration by proteins and peptides. In addition, chemical reduction to less soluble forms can result in immobilization. Microbial processes involved in radionuclide solubilization include autotrophic and heterotrophic leaching, and complexation by siderophores and other metabolites. Such mechanisms are important components of biogeochemical cycles for radionuclides and should be considered in any analyses of environmental radionuclide contamination. In addition, several microorganism-based biotechnologies are receiving interest as potential treatment methods.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D004787 Environmental Pollution Contamination of the air, bodies of water, or land with substances that are harmful to human health and the environment. Pollution, Environmental,Soil Pollution,Pollution, Soil
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D017753 Ecosystem A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Ecosystems,Biome,Ecologic System,Ecologic Systems,Ecological System,Habitat,Niche, Ecological,System, Ecological,Systems, Ecological,Biomes,Ecological Niche,Ecological Systems,Habitats,System, Ecologic,Systems, Ecologic

Related Publications

G M Gadd
November 2020, Communications chemistry,
G M Gadd
April 1967, Zeitschrift fur Tuberkulose und Erkrankungen der Thoraxorgane,
G M Gadd
March 2000, Journal of radiological protection : official journal of the Society for Radiological Protection,
G M Gadd
November 1962, Archives of internal medicine,
Copied contents to your clipboard!