NMR studies of the Escherichia coli Trp repressor.trpRs operator complex. 1996

P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
School of Biochemistry, University of Birmingham, Edgbaston, UK.

To understand the specificity of the Escherichia coli Trp repressor for its operators, we have begun to study complexes of the protein with alternative DNA sequences, using 1H-NMR spectroscopy. We report here the 1H-NMR chemical shifts of a 20-bp oligodeoxynucleotide containing the sequence of a symmetrised form of the trpR operator in the presence and absence of the holorepressor. Deuterated protein was used to assign the spectrum of the oligodeoxynucleotide in a 37-kDa complex with the Trp holorepressor. Many of the resonances of the DNA shift on binding to the protein, which suggests changes in conformation throughout the sequence. The largest changes in shifts for the aromatic protons in the major groove are for A15 and G16, which are thought to hydrogen bond to the protein, possibly via water molecules. We have also examined the effect of DNA binding on the corepressor, tryptophan, in this complex. The indole proton resonance of the tryptophan undergoes a downfield shift of 1.2 ppm upon binding of DNA. This large shift is consistent with hydrogen bonding of the tryptophan to the phosphate backbone of the trpR operator DNA, as in the crystal structure of the holoprotein with the trp operator.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003852 Deoxyribonucleoproteins Proteins conjugated with deoxyribonucleic acids (DNA) or specific DNA.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
August 1987, Biochemistry,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
November 1991, European journal of biochemistry,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
June 1987, Biochimica et biophysica acta,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
March 1988, The Biochemical journal,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
May 1990, The Journal of biological chemistry,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
October 1985, European journal of biochemistry,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
April 2010, Journal of theoretical biology,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
August 1989, European journal of biochemistry,
P D Evans, and M Jaseja, and M Jeeves, and E I Hyde
February 1996, European journal of biochemistry,
Copied contents to your clipboard!