Differential development and characterization of rapid acute neuronal tolerance to the depressant effects of ethanol on cerebellar Purkinje neurons of low-alcohol-sensitive and high-alcohol-sensitive rats. 1997

B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA.

Rapid acute neuronal tolerance (RANT) to the depressant effects of ethanol (EtOH) is a desensitization of EtOH-induced depression of neuronal firing that develops over the first 5 to 7 min of EtOH exposure. This phenomenon has been hypothesized to play a role in acute behavioral insensitivity to EtOH and is expressed by cerebellar Purkinje neurons in animals selectively bred for insensitivity to EtOH-induced ataxia, such as low-alcohol-sensitive (LAS) rats and short-sleep mice. Purkinje neurons of animals bred for high sensitivity to EtOH-induced behavioral ataxia, such as high-alcohol-sensitive (HAS) rats and long-sleep mice, only infrequently express such acute tolerance to EtOH-induced depression of neuronal activity. However, because higher EtOH doses are required to depress Purkinje neuron activity in LAS rats than in HAS rats, it was not known whether the higher EtOH doses that depress LAS neurons would also induce RANT to EtOH in HAS rats, which were generally not exposed to such high EtOH doses in previous studies. Furthermore, the conditions for development and maintenance of RANT to EtOH had not been characterized. We found that RANT to EtOH-induced depression of cerebellar neurons principally developed within 5 min of EtOH application and recovered within 20 min of the last EtOH exposure and that neurons in HAS rats did not develop acute tolerance to the higher EtOH doses that were effective in LAS rats. We conclude that this rapid tolerance contributes to the acute EtOH sensitivity difference between LAS and HAS rats.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001259 Ataxia Impairment of the ability to perform smoothly coordinated voluntary movements. This condition may affect the limbs, trunk, eyes, pharynx, larynx, and other structures. Ataxia may result from impaired sensory or motor function. Sensory ataxia may result from posterior column injury or PERIPHERAL NERVE DISEASES. Motor ataxia may be associated with CEREBELLAR DISEASES; CEREBRAL CORTEX diseases; THALAMIC DISEASES; BASAL GANGLIA DISEASES; injury to the RED NUCLEUS; and other conditions. Coordination Impairment,Dyssynergia,Incoordination,Ataxia, Appendicular,Ataxia, Limb,Ataxia, Motor,Ataxia, Sensory,Ataxia, Truncal,Ataxy,Dyscoordination,Lack of Coordination,Tremor, Rubral,Appendicular Ataxia,Appendicular Ataxias,Ataxias,Ataxias, Appendicular,Ataxias, Limb,Ataxias, Motor,Ataxias, Sensory,Ataxias, Truncal,Coordination Impairments,Coordination Lack,Impairment, Coordination,Impairments, Coordination,Incoordinations,Limb Ataxia,Limb Ataxias,Motor Ataxia,Motor Ataxias,Rubral Tremor,Rubral Tremors,Sensory Ataxia,Sensory Ataxias,Tremors, Rubral,Truncal Ataxia,Truncal Ataxias
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
April 1980, Canadian journal of physiology and pharmacology,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
August 2006, Alcoholism, clinical and experimental research,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
May 2002, European journal of pharmacology,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
December 1993, Neuroscience letters,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
August 1998, Alcoholism, clinical and experimental research,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
January 1992, Brain research,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
January 1982, General pharmacology,
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
May 2003, Alcohol (Fayetteville, N.Y.),
B J Pearson, and D P Donatelli, and R K Freund, and M R Palmer
January 1992, Psychopharmacology,
Copied contents to your clipboard!