Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes. 1997

F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
University Laboratory of Physiology, Oxford, UK.

1. We have studied the electrophysiological properties of cloned ATP-sensitive K+ channels (KATP channels) heterologously expressed in Xenopus oocytes. This channel comprises a sulphonylurea receptor subunit (SUR) and an inwardly rectifying K+ channel subunit (Kir). 2. Oocytes injected with SUR1 and either Kir6.2 or Kir6.1 exhibited large inwardly rectifying K+ currents when cytosolic ATP levels were lowered by the metabolic inhibitors azide or FCCP. No currents were observed in response to azide in oocytes injected with Kir6.2, Kir6.1 or SUR1 alone, indicating that both the sulphonylurea receptor (SUR1) and an inward rectifier (Kir6.1 or Kir6.2) are needed for functional channel activity. 3. The pharmacological properties of Kir6.2-SUR1 currents resembled those of native beta-cell ATP-sensitive K+ channel currents (KATP currents): the currents were > 90% blocked by tolbutamide (500 microM), meglitinide (10 microM) or glibenclamide (100 nM), and activated 1.8-fold by diazoxide (340 microM), 1.4-fold by pinacidil (1 mM) and unaffected by cromakalim (0.5 mM). 4. Macroscopic Kir6.2-SUR1 currents in inside-out patches were inhibited by ATP with a Ki of 28 microM. Kir6.1-SUR1 currents ran down within seconds of patch excision preventing analysis of ATP sensitivity. 5. No sensitivity to tolbutamide or metabolic inhibition was observed when SUR1 was coexpressed with either Kir1.1a or Kir2.1, suggesting that these proteins do not couple in Xenopus ocytes. 6. Our data demonstrate that the Xenopus oocyte constitutes a good expression system for cloned KATP channels and that expression may be assayed by azide-induced metabolic inhibition.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
October 1997, The Journal of physiology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
September 2004, Biochemical pharmacology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
March 1993, Japanese journal of pharmacology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
February 1995, The Plant journal : for cell and molecular biology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
August 1995, The American journal of physiology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
November 1988, Neuron,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
December 1994, Canadian journal of physiology and pharmacology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
October 1990, The Journal of general physiology,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
January 1996, Yao xue xue bao = Acta pharmaceutica Sinica,
F M Gribble, and R Ashfield, and C Ammälä, and F M Ashcroft
January 1997, Proceedings of the Western Pharmacology Society,
Copied contents to your clipboard!