Modulation of Na+,K(+)-ATPase activity by a tyrosine phosphorylation process in rat proximal convoluted tubule. 1997

E Féraille, and M L Carranza, and M Rousselot, and H Favre
Division de Néphrologie, Hôpital Cantonal Universitaire, Genève, Switzerland.

1. In the rat kidney proximal convoluted tubule, epidermal growth factor and insulin have been reported to stimulate Na+ reabsorption. Because most of the effects of these growth factors are mediated by a process of tyrosine phosphorylation and Na+,K(+)-ATPase drives Na+ reabsorption, the influence of tyrosine kinases and tyrosine phosphatases on Na+,K(+)-ATPase activity located in the proximal convoluted tubule was evaluated. 2. Activation of receptor tyrosine kinases by epidermal growth factor and insulin stimulated ouabain-sensitive 86Rb+ uptake. The effects of epidermal growth factor and insulin were prevented by genistein, a tyrosine kinase inhibitor, but were unaffected by GF109203X, a protein kinase C inhibitor. 3. Inhibition of tyrosine phosphatases by orthovanadate (10(-7) and 10(-6)M) mimicked the effects of activation of receptor tyrosine kinases: stimulation of the ouabain-sensitive 86Rb+ uptake and of the hydrolytic activity of Na+,K(+)-ATPase under rate-limiting Na+ concentration, and absence of modification of the maximal activity (Vmax) of the enzyme. The effects of orthovanadate and insulin on the ouabain-sensitive 86Rb+ uptake were not additive. 4. The present results show that both activation of receptor tyrosine kinases and inhibition of tyrosine phosphatases stimulate the Na+,K(+)-ATPase activity through a common mechanism. Thus, a tyrosine phosphorylation process directly controls the Na+,K(+)-ATPase activity and contributes to the physiological control of water and solute reabsorption in the proximal convoluted tubule.

UI MeSH Term Description Entries
D008297 Male Males
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

E Féraille, and M L Carranza, and M Rousselot, and H Favre
March 1994, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
January 1987, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
January 1988, Progress in clinical and biological research,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
February 1992, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
May 2010, American journal of physiology. Renal physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
August 2002, Nitric oxide : biology and chemistry,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
March 1997, The American journal of physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
January 1985, Renal physiology,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
June 2002, Acta physiologica Scandinavica,
E Féraille, and M L Carranza, and M Rousselot, and H Favre
October 2004, American journal of physiology. Renal physiology,
Copied contents to your clipboard!