Isoflurane and halothane attenuate endothelium-dependent vasodilation in rat coronary microvessels. 1997

K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.

Volatile anesthetics attenuate endothelium-dependent vasodilation but the mechanism of attenuation remains controversial. The present study examines the mechanism of isoflurane- and halothane-mediated attenuation of endothelium-dependent vasodilation in Wistar rat coronary microvessels of about 100 microns internal diameter. The vessels were studied in vitro in a pressurized (40 mm Hg), no-flow state using video microscopy. After preconstriction of the vessels with the thromboxane analog U46619 1 microM, concentration response curves to acetylcholine (ACh), the calcium ionophore A23187, sodium nitroprusside (SNP), or the stable cyclic guanosine monophosphate (cGMP) analog 8-bromo-cGMP (Br-cGMP) were obtained in the presence of 0% (control), 1% or 2% isoflurane, or 1% or 2% halothane. Isoflurane 1% and 2% significantly attenuated vasodilation to ACh and A23187. Isoflurane 2%, but not 1%, attenuated vasodilation to SNP. Vasodilation to Br-cGMP was not affected by isoflurane. Halothane attenuated vasodilation to ACh, but had no effect on vasodilation to A23187, SNP, or Br-cGMP. We conclude that isoflurane attenuates endothelium-dependent vasodilation by impairing at least two distinct steps in the nitric oxide (NO)-cGMP pathway, the first being between endothelial increase of calcium and smooth muscle guanylate cyclase and the second being inhibition of soluble guanylate cyclase activity. These two steps appear to have different sensitivities to the effect of isoflurane. Halothane has an effect at the endothelial receptor level, but not any distal steps in the NO-cGMP pathway.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums

Related Publications

K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
January 2003, Journal of anesthesia,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
June 2002, Anesthesiology,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
August 1991, Anesthesiology,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
August 1992, Anesthesia and analgesia,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
July 1989, Anesthesiology,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
January 1997, The American journal of physiology,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
June 1996, The American journal of physiology,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
October 1996, Shock (Augusta, Ga.),
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
August 1993, The American journal of physiology,
K W Park, and H B Dai, and E Lowenstein, and A Darvish, and F W Sellke
September 1994, Anesthesiology,
Copied contents to your clipboard!