Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. 1997

M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 94143, USA.

The classical view of fast chemical synaptic transmission is that released neurotransmitter acts locally on postsynaptic receptors and is cleared from the synaptic cleft within a few milliseconds by diffusion and by specific reuptake mechanisms. This rapid clearance restricts the spread of neurotransmitter and, combined with the low affinities of many ionotropic receptors, ensures that synaptic transmission occurs in a point-to-point fashion. We now show, however, that when transmitter release is enhanced at hippocampal mossy fibre synapses, the concentration of glutamate increases and its clearance is delayed; this allows it to spread away from the synapse and to activate presynaptic inhibitory metabotropic glutamate receptors (mGluRs). At normal levels of glutamate release during low-frequency activity, these presynaptic receptors are not activated. When glutamate concentration is increased by higher-frequency activity or by blocking glutamate uptake, however, these receptors become activated, leading to a rapid inhibition of transmitter release. This effect may be related to the long-term depression of mossy fibre synaptic responses that has recently been shown after prolonged activation of presynaptic mGluRs (refs 2, 3). The use-dependent activation of presynaptic mGluRs that we describe here thus represents a negative feedback mechanism for controlling the strength of synaptic transmission.

UI MeSH Term Description Entries
D010867 Pimelic Acids A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. Pimelic Acid,Acid, Pimelic,Acids, Pimelic
D011810 Quinoxalines Quinoxaline
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D018091 Receptors, AMPA A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). AMPA Receptors,Quisqualate Receptors,AMPA Receptor,Quisqualate Receptor,Receptor, AMPA,Receptor, Quisqualate,Receptors, Quisqualate

Related Publications

M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
July 2000, Journal of neurophysiology,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
January 2008, Handbook of experimental pharmacology,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
March 2000, Journal of neurophysiology,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
January 2020, Current neuropharmacology,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
January 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
October 2002, Sheng li ke xue jin zhan [Progress in physiology],
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
July 2005, Journal of neurophysiology,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
August 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
July 2009, Steroids,
M Scanziani, and P A Salin, and K E Vogt, and R C Malenka, and R A Nicoll
January 2005, The Journal of physiology,
Copied contents to your clipboard!