Modulation of bovine papillomavirus DNA replication by phosphorylation of the viral E1 protein. 1997

T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA.

E1 is the DNA replication origin recognition protein for bovine papillomavirus (BPV), and it carries out enzymatic functions required for initiation of viral DNA replication. Cellular mechanisms likely play a role in regulating BPV DNA replication. We are investigating the role of phosphorylation of E1 on viral replication in vivo and on E1 activity in vitro. Serine 109 is a phosphoacceptor in vivo and is targeted by protein kinase A and protein kinase C in vitro. A viral genome carrying a serine 109 to alanine mutation replicates more efficiently than wild-type in vivo in a transient replication assay. Furthermore, purified mutant protein, while having wild-type levels of ATPase activity, is able to bind more origin-containing DNA than wild-type E1. Phosphorylation therefore appears to play a selective role in modulating a specific E1 function during viral DNA replication.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
May 1996, Virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
February 2004, Journal of virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
February 2002, Virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
January 2007, Journal of virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
January 1998, Journal of virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
September 1993, Journal of virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
April 1995, Journal of virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
October 1991, Journal of virology,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
T A Zanardi, and C M Stanley, and B M Saville, and S M Spacek, and M R Lentz
April 1998, Journal of virology,
Copied contents to your clipboard!