Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I human spermatocytes. 1996

A L Barlow, and M A Hultén
LSF Research Unit, Regional Genetics Services, Heartlands Hospital, Birmingham, UK. alb@dnalab.demon.co.uk

We have used a combination of immunocytogenetic and molecular cytogenetic technology on human spermatocytes to investigate (1) meiosis I chromosome pairing, and (2) organization of synaptonemal complex (SC)-associated chromatin with respect to whole chromosome paints, unique DNA sequences and repetitive DNA of heterochromatic blocks, centromeres and telomeres. It is evident that synapsis normally starts at the termini of homologues. In general, synapsis proceeds synchronously from termini towards the centre of bivalents without any indication of interstitial initiation. Some aberrant meiosis I spermatocytes showed asynchronous pairing, demonstrating not only large differences in the degree of SC formation between bivalents, but also chromosome alignment without synapsis as well as clear interstitial synaptic initiation. It may be the case that alignment normally takes place along the entire length of homologues before synapsis occurs and that the potential for synaptic initiation exists along the length of chromosomes. Telomeric sequences were seen tightly associated with the SCs, as might be expected considering their kinetic properties in relation to the nuclear membrane. Other repetitive DNA, i.e. centromeric alpha-satellites and classical satellites of the heterochromatic blocks 1qh and 9qh, were all found to form loops that are associated with SCs only at their bases. A unique DNA cosmid probe (21q22.3) was found to produce a hybridization pattern consisting of spots located outside SC. The fluorescence in situ hybridization (FISH) signals of these spread DNA sequences have a granular appearance, probably reflecting the pattern of coiling and chromatin condensation of the target DNAs.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D013090 Spermatocytes Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS. Spermiocytes,Spermatocyte,Spermiocyte
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings

Related Publications

A L Barlow, and M A Hultén
January 1995, Developmental genetics,
A L Barlow, and M A Hultén
January 1967, Atti della Accademia dei fisiocritici in Siena. Sezione medico-fisica,
A L Barlow, and M A Hultén
August 2002, European journal of cancer (Oxford, England : 1990),
A L Barlow, and M A Hultén
January 1973, Advances in human genetics,
A L Barlow, and M A Hultén
March 1993, Annals of the New York Academy of Sciences,
A L Barlow, and M A Hultén
December 1993, Genes, chromosomes & cancer,
A L Barlow, and M A Hultén
January 2009, Methods in molecular biology (Clifton, N.J.),
A L Barlow, and M A Hultén
January 2018, Methods in cell biology,
Copied contents to your clipboard!