Removal of extracellular calcium after conditioning stimulation disrupts long-term potentiation in the CA1 region of rat hippocampal slices. 1997

H Katsuki, and Y Izumi, and C F Zorumski
Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.

During a conditioning stimulus, the influx of Ca2+ into neurons appears to be crucial for the induction of long-term potentiation at CA1 hippocampal synapses. We report here that extracellular Ca2+ is also required for full production of long-term potentiation during a critical period following the conditioning stimulus. In control slices, removal of extracellular Ca2+ (0 mM Ca2+/10 mM Mg2+) for 15 min eliminated synaptic transmission. Following reintroduction of normal extracellular solution, synaptic responses recovered fully within 15 min. However, removal of extracellular Ca2+ 15-30 min after theta burst stimulation significantly decreased the magnitude of long-term potentiation. A time window seems to exist for this effect, since either earlier or later Ca2+ removal was less effective. The effect of the 0 mM Ca2+/10 mM Mg2+ solution was observed in the absence of afferent stimulation, suggesting that evoked synaptic activity is not required. Perfusion with an extracellular solution containing Cd2+ (40 microM), a broad spectrum inhibitor of voltage-dependent Ca2+ channels, or a low concentration (50 microM) of Ni2+, which preferentially blocks T-type, low-voltage-activated Ca2+ channels, also caused a significant decrease in potentiation, whereas an inhibitor of L-type, high voltage-activated Ca2+ channel, nifedipine (20 microM), had no effect. These results suggest that the presence of extracellular Ca2+ during a specific period after high-frequency synaptic activity is necessary for the maintenance of long-term potentiation, and that voltage-gated Ca2+ channels play a role in the stabilization of synaptic plasticity.

UI MeSH Term Description Entries
D008297 Male Males
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D003213 Conditioning, Psychological Simple form of learning involving the formation, strengthening, or weakening of an association between a stimulus and a response. Conditioning, Psychology,Psychological Conditioning,Social Learning Theory,Social Learning Theories,Theory, Social Learning
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

H Katsuki, and Y Izumi, and C F Zorumski
May 1995, Synapse (New York, N.Y.),
H Katsuki, and Y Izumi, and C F Zorumski
July 1989, Pharmacology, biochemistry, and behavior,
H Katsuki, and Y Izumi, and C F Zorumski
March 2014, Neuroscience research,
H Katsuki, and Y Izumi, and C F Zorumski
May 1990, Neuroscience letters,
H Katsuki, and Y Izumi, and C F Zorumski
September 2009, Neuroscience letters,
Copied contents to your clipboard!