X-ray imaging technique for in vitro tissue composition measurements using saline/iodine displacement: technique optimization. 1997

M Moreau, and D W Holdsworth, and A Fenster
Imaging Research Laboratories, John P. Robarts Research Institute, London, Ontario, Canada.

An in vitro radiographic technique which uses saline/iodine displacement has been developed to study the thickness of bone-equivalent and soft-tissue-equivalent materials within atherosclerotic plaques in arterial specimens which have been cut open longitudinally and laid flat. Results concerning the optimization of the imaging parameters are presented and discussed. The technique consists of imaging arterial specimens under two different conditions: (1) when it is immersed in an isotonic saline solution, to estimate the calcium content, and (2) when it is immersed in a concentrated iodine solution, to estimate the total thickness of the specimen. Calibration step wedges made out of bone-mimicking and soft-tissue-mimicking materials are imaged simultaneously to generate calibration curves which are used to convert the radiographs into bone-equivalent and soft-tissue-equivalent thickness images. The optimal spectral parameters were determined to be 45 and 100 kVp for the saline and the iodine images, respectively, with a significant amount of added filtration for both images. Inherent systematic inaccuracies due to (1) the nonidealities due to linear attenuation coefficient mismatch between tissue and calibration materials and (2) beam hardening due to heel effect are determined theoretically, and can be used to correct a set of bone-equivalent and the soft-tissue-equivalent images to within +/- 6 microns with an ideal, noise-free imaging system.

UI MeSH Term Description Entries
D007455 Iodine A nonmetallic element of the halogen group that is represented by the atomic symbol I, atomic number 53, and atomic weight of 126.90. It is a nutritionally essential element, especially important in thyroid hormone synthesis. In solution, it has anti-infective properties and is used topically. Iodine-127,Iodine 127
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000792 Angiography Radiography of blood vessels after injection of a contrast medium. Arteriography,Angiogram,Angiograms,Angiographies,Arteriographies
D001161 Arteriosclerosis Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries. Arterioscleroses
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

M Moreau, and D W Holdsworth, and A Fenster
January 1992, Medical physics,
M Moreau, and D W Holdsworth, and A Fenster
January 2008, Cancer informatics,
M Moreau, and D W Holdsworth, and A Fenster
December 2012, The international journal of cardiovascular imaging,
M Moreau, and D W Holdsworth, and A Fenster
July 2016, Optics express,
M Moreau, and D W Holdsworth, and A Fenster
September 2013, Medical physics,
M Moreau, and D W Holdsworth, and A Fenster
January 1977, Medical physics,
M Moreau, and D W Holdsworth, and A Fenster
March 2012, Journal of synchrotron radiation,
M Moreau, and D W Holdsworth, and A Fenster
March 2014, The Review of scientific instruments,
M Moreau, and D W Holdsworth, and A Fenster
September 2006, Physics in medicine and biology,
M Moreau, and D W Holdsworth, and A Fenster
January 2009, Radiological physics and technology,
Copied contents to your clipboard!