Muscle isoactin expression during in vitro differentiation of murine embryonic stem cells. 1997

W A Ng, and T Doetschman, and J Robbins, and J L Lessard
Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Ohio 45229, USA.

Embryonic stem (ES) cells are pluripotent cells derived from mouse blastocysts. ES cells can differentiate into complex embryoid bodies (EBs) which exhibit many of the characteristics of 4-10-d embryos, including areas which rhythmically contract. The expression of the four muscle isoactins was examined in EBs by using transcript-specific probes for each of the muscle actin mRNAs and selectively reactive MAbs to muscle actins. Northern blot analyses from undifferentiated ES cells and EBs after 5, 10, 15, and 20 d in suspension culture demonstrated that no muscle actin transcripts could be detected in the undifferentiated cells, whereas during differentiation, the vascular and enteric smooth muscle isoactin mRNAs were easily detected. To further define the pattern of expression polymerase chain reaction analyses were carried out on RNA isolated from individual EBs. The data indicated that all four muscle-specific actin genes are transcribed. We also demonstrated the presence of muscle actins in at least two distinct cell populations within the EBs using selectively reactive MAbs. Fibroblast-like cells exhibit significant levels of the two smooth muscle actins (vascular and enteric) localized to stress fibers. In addition, one or both of the striated muscle actins (cardiac and skeletal) are expressed in cardiomyocyte-like cells. As is the case in embryonic heart, alpha-smooth muscle actin and the striated muscle actin(s) are incorporated into well organized sarcomeres in these cardiomyocyte-like cells. Thus, differentiating EBs provide an in vitro system to study both striated and smooth muscle cell gene expression.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

W A Ng, and T Doetschman, and J Robbins, and J L Lessard
January 2008, Methods in molecular biology (Clifton, N.J.),
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
March 2009, Neuroscience letters,
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
May 2010, Endocrinology,
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
December 2007, European journal of cell biology,
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
September 2008, Chemico-biological interactions,
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
January 2003, In vitro cellular & developmental biology. Animal,
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
September 2005, Hepatology (Baltimore, Md.),
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
December 1997, Differentiation; research in biological diversity,
W A Ng, and T Doetschman, and J Robbins, and J L Lessard
November 2007, Journal of cell science,
Copied contents to your clipboard!