Regulation of the energy coupling in mitochondria by some steroid and thyroid hormones. 1997

A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.

Male sex hormones [dihydrotestosterone (DTS), and testosterone] and progesterone, when added to the isolated rat liver mitochondria before or after some protonophores, lower the respiration rate and increase the delta psi level, i.e., reverse the protonophore-induced uncoupling. Such a recoupling ability shows specific structural requirements correlating with hormonal activity of steroids studied. For instance, epiandrosterone, a DTS isomer of very low hormonal activity, and deoxycorticosterone, differing from progesterone by additional OH-group and possessing quite different hormonal activity, as well as female sex hormones (estron and estradiol) show no recoupling effect. Like 6-ketocholestanol (kCh), male sex hormones and progesterone recouple mitochondria uncoupled by low concentrations of SF6847, FCCP and CCCP, but not by high concentration of these uncouplers or by any concentration of DNP, palmitate and gramicidin. In contrast to recoupling by kCh, hormonal recoupling requires addition of serum albumin and is inhibited by low concentrations of palmitate. Recoupling can also be shown on the heart and skeletal muscle mitochondria, being absent from the heart muscle submitochondrial particles, the bacterial chromatophores and the cytochrome oxidase proteoliposomes. In mitochondria it does not depend upon the oxidation substrate used (succinate or PMS + ascorbate were tested). Pronounced seasonal effect upon the DTS recoupling degree was revealed. The recoupling is maximal in January, February and from June to November, being minimal in the spring months and in December. In spring, the in vivo administration of thyroxine, di- or triiodothyronine improves the recoupling ability of DTS. 2 x 10 - 6 M. Thyroxine, when added in vitro, does not affect energy coupling if SF6847 was absent. In the presence of small amounts of SF6847, thyroxine stimulates the uncoupling in a DTS-sensitive fashion, di- and triiodothyronines being less effective. Addition of thyroxine to azide-inhibited mitochondria (oligomycin is present) stimulates respiration and normalizes the delta psi level. In this system, triiodothyronine is much less effective, whereas diiodothyronine is not effective at all. In the intact cells (thymocytes and the Krebs-II cells were tested), DTS lowers the respiration rate stimulated by low concentrations of SF6846 or FCCP. In this case, serum albumin is not required. It is suggested that recoupling effects of male sex hormones and progesterone are involved in their anabolic action just as uncoupling takes part in the catabolic activity of thyroid hormones.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
January 1979, Advances in experimental medicine and biology,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
September 1983, Biulleten' eksperimental'noi biologii i meditsiny,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
July 2013, Trends in molecular medicine,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
February 2002, Bioscience reports,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
January 1967, Proceedings. Canadian Cancer Conference,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
April 1996, Steroids,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
January 1987, Journal of steroid biochemistry,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
February 1989, Cell,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
January 1993, European journal of clinical pharmacology,
A A Starkov, and R A Simonyan, and V I Dedukhova, and S E Mansurova, and L A Palamarchuk, and V P Skulachev
January 1989, Journal of steroid biochemistry,
Copied contents to your clipboard!