Intracellular acidification of the leech giant glial cell evoked by glutamate and aspartate. 1997

J W Deitmer, and H P Schneider
Abteilung für Allgemeine Biologie, FB Biologie, Universität Kaiserslautern, Germany.

Glutamate is an excitatory receptor agonist in both neurones and glial cells, and, in addition, glutamate is also a substrate for glutamate transporter in glial cells. We have measured intracellular and extracellular pH changes induced by bath application of glutamate, its receptor agonist kainate, and its transporter agonist aspartate, in the giant neuropile glial cell in the central nervous system of the leech Hirudo medicinalis, using double-barrelled pH-sensitive microelectrodes. The giant glial cells responded to glutamate and aspartate (100-500 microM), and kainate (5-20 microM) with a membrane depolarization or an inward current and with a distinct intracellular acidification. Glutamate and aspartate (both 500 microM) evoked a decrease in intracellular pH (pHi) by 0.187 +/- 0.081 (n = 88) and 0.198 +/- 0.067 (n = 86) pH units, respectively. With a resting pHi of 7.1 or 80 nM H+, these acidifications correspond to a mean increase of the intracellular H+ activity by 42 nM and 45 nM. Kainate caused a decrease of pHi by 0.1-0.35 pH units (n = 15). The glutamate/aspartate-induced decrease in pHi was not significantly affected by the glutamate receptor blockers kynurenic acid (1 mM) and 6-cyano-7-dinitroquinoxaline-2,3-dione (CNQX, 50-100 microM), which greatly reduced the kainate-induced change in pHi. Extracellular alkalinizations produced by glutamate and aspartate were not affected by CNQX. Reduction of the external Na+ concentration gradually decreased the intracellular pH change induced by glutamate/aspartate, indicating half maximal activation of the acidifying process at 5-10 mM external Na+ concentration. When all external Na+ was replaced by NMDG+, the pHi responses were completely suppressed (glutamate) or reduced to 10% (aspartate). When Na+ was replaced by Li+, the glutamate- and aspartate-evoked pHi responses were reduced to 18% and 14%, respectively. Removal of external Ca2+ reduced the glutamate- and aspartate-induced pHi responses to 93 and 72%, respectively. The glutamate/aspartate-induced intracellular acidifications were not affected by the putative glutamate uptake inhibitor amino-adipidic acid (1 mM). DL-aspartate-beta-hydroxamate (1 mM), and dihydrokainate (2 mM), which caused some pHi decrease on its own, reduced the glutamate/aspartate-induced pHi responses by 40 and 69%, respectively. The putative uptake inhibitor DL-threo-beta-hydroxyaspartate (THA, 1 mM) induced a prominent intracellular acidification (0.36 +/- 0.05 pH units, n = 9), and the pHi change evoked by glutamate or aspartate in the presence of THA was reduced to less than 10%. The results indicate that glutamate, aspartate, and kainate produce substantial intracellular acidifications, which are mediated by at least two independent mechanisms: 1) via activation of non-NMDA glutamate receptors and 2) via uptake of the excitatory amino acids into the leech glial cell.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000143 Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. (Grant & Hackh's Chemical Dictionary, 5th ed) Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine

Related Publications

J W Deitmer, and H P Schneider
February 1998, The Journal of physiology,
J W Deitmer, and H P Schneider
October 1997, The Journal of experimental biology,
J W Deitmer, and H P Schneider
January 1997, Neuroscience research,
J W Deitmer, and H P Schneider
April 1999, Glia,
J W Deitmer, and H P Schneider
April 1999, Glia,
J W Deitmer, and H P Schneider
November 2007, The Journal of experimental biology,
Copied contents to your clipboard!