Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. 1996

M E Hasselmo, and B P Wyble, and G V Wallenstein
Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA.

This research focuses on linking episodic memory function to the cellular physiology of hippocampal neurons, with a particular emphasis on modulatory effects at cholinergic and gamma-aminobutyric acid B receptors. Drugs which block acetylcholine receptors (e.g., scopolamine) have been shown to impair encoding of new information in humans, nonhuman primates, and rodents. Extensive data have been gathered about the cellular effects of acetylcholine in the hippocampus. In this research, models of individual hippocampal subregions have been utilized to understand the significance of particular features of modulation, and these hippocampal subregions have been combined in a network simulation which can replicate the selective encoding impairment produced by scopolamine in human subjects.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011939 Mental Recall The process whereby a representation of past experience is elicited. Recall, Mental
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M E Hasselmo, and B P Wyble, and G V Wallenstein
November 2003, Neurobiology of learning and memory,
M E Hasselmo, and B P Wyble, and G V Wallenstein
January 2004, Learning & memory (Cold Spring Harbor, N.Y.),
M E Hasselmo, and B P Wyble, and G V Wallenstein
March 2020, Nature reviews. Neuroscience,
M E Hasselmo, and B P Wyble, and G V Wallenstein
January 2019, Network neuroscience (Cambridge, Mass.),
M E Hasselmo, and B P Wyble, and G V Wallenstein
January 2012, PloS one,
M E Hasselmo, and B P Wyble, and G V Wallenstein
May 1999, Neurochemistry international,
M E Hasselmo, and B P Wyble, and G V Wallenstein
June 2010, Cognitive neuroscience,
M E Hasselmo, and B P Wyble, and G V Wallenstein
January 2019, Frontiers in behavioral neuroscience,
Copied contents to your clipboard!