Exencephaly and cleft cerebellum in SELH/Bc mouse embryos are alternative developmental consequences of the same underlying genetic defect. 1996

T M Gunn, and D M Juriloff, and M J Harris
Department of Medical Genetics, University of British Columbia, Vancouver, Canada.

SELH/Bc inbred mice have ataxia in 5-10% of young adults and exencephaly in 10-20% of newborns. SELH/Bc mice also have a high rate of spontaneous mutation and therefore it could not be assumed that these two abnormalities share the same genetic cause. Previously, we have shown that the liability to exencephaly in SELH/Bc mice is multifactorial, involving two to three loci, and that all the ataxics have a midline cleft cerebellum. The purpose of the present study was to resolve the genetic relationship between liability to exencephaly and liability to cleft cerebellum. We tested whether these traits were transmitted together by segregating F2 males; cotransmission would indicate that both traits are probably caused by the same genes. Approximately 100 embryos from each of 25 F2 sires from a cross between SELH/Bc and the normal LM/Bc strain were scored for exencephaly and the non-exencephalic embryos were scored for cleft cerebellum. The range of exencephaly production by these 25 F2 sires was 0% to 16%; the sires had been selected to represent the extremes of the range of exencephaly production. We found that the 10 sires that produced no exencephaly also produced no cleft cerebellum and 12 of the 15 sires that produced some exencephaly also produced some cleft cerebellum. This indicated strongly that the two traits are transmitted together (Fisher's exact test, P < 0.0002). Furthermore, within exencephaly-producing sires, the specific frequencies of the two traits were significantly positively correlated (Spearman rs = 0.58; P < 0.05), indicating that the same multifactorial risk factors influence both traits. All SELH/Bc embryos omit one normal initiation site of cranial neural tube closure, Closure 2. In a previous study, absence of the Closure 2 initiation site of cranial neural tube closure has been shown to be genetically correlated with liability to exencephaly. In the second part of the present study, the same Closure 2 data from eight of the F2 sires were observed to be significantly positively correlated with liability to cleft cerebellum (Spearman rs = 0.83; P < 0.05). The results of this genetic approach have supported the hypothesis, based on observation of embryos, that one basic multifactorial genetic defect in SELH mice leads to an abnormal cranial neural tube closure mechanism, to exencephaly to cleft cerebellum, and to ataxia.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T M Gunn, and D M Juriloff, and M J Harris
August 2005, Birth defects research. Part A, Clinical and molecular teratology,
T M Gunn, and D M Juriloff, and M J Harris
October 1989, Teratology,
T M Gunn, and D M Juriloff, and M J Harris
July 2023, Molecular human reproduction,
T M Gunn, and D M Juriloff, and M J Harris
April 1994, Genome,
T M Gunn, and D M Juriloff, and M J Harris
December 1966, Acta odontologica Scandinavica,
T M Gunn, and D M Juriloff, and M J Harris
December 1982, Pediatria polska,
T M Gunn, and D M Juriloff, and M J Harris
April 1992, Genome,
T M Gunn, and D M Juriloff, and M J Harris
September 2013, Frontiers in neuroanatomy,
T M Gunn, and D M Juriloff, and M J Harris
December 1966, Acta odontologica Scandinavica,
T M Gunn, and D M Juriloff, and M J Harris
November 1967, Acta odontologica Scandinavica,
Copied contents to your clipboard!