p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. 1997

S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
Division of Experimental Oncology 1, Centro di Riferimento Oncologico, Aviano, Italy.

The p16/CDKN2(MTS1) gene encoding for the p16 inhibitor of cyclin D/CDK4 complexes is frequently mutated and deleted in a large fraction of melanoma cell lines, and p16 germline mutations have also been observed in familial melanomas. Moreover, a CDK4 gene mutation, responsible for a functional resistance of CDK4 kinase to p16 inhibitory activity, has been described to occur in some cases of familial melanoma. These data strongly support the idea that deregulation of the CDK4/cyclin D pathway, via CDKN2 or CDK4 mutations, is of biological significance in the development of melanoma. To shed light on the role of these alterations in the development and progression of sporadic melanoma, 12 primary melanomas and 9 corresponding metastases were analyzed for CDKN2 and CDK4 gene mutations. Of the 12 primary melanomas analyzed, 4 showed the presence of mutational inactivation of the p 16 protein and 2 carried silent mutations. No metastases showed the presence of CDKN2 mutations, indicating that mutations of this cyclin-dependent kinase inhibitor is not common in the progression of sporadic melanoma. On the other hand, the absence, in the metastases, of the CDKN2 mutation detected in the corresponding primary tumors suggests that 9p21 homozygous deletion may play a major role in the metastatic spreading of this type of tumor. None of the cases analyzed showed the presence of an Arg24Cys mutation, which functionally protects CDK4 from p16 inhibition. This indicates that CDK4 mutation plays a minor role in the development and progression of sporadic melanoma.

UI MeSH Term Description Entries
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016147 Genes, Tumor Suppressor Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible. Antioncogenes,Cancer Suppressor Genes,Emerogenes,Genes, Cancer Suppressor,Genes, Growth Suppressor,Genes, Metastasis Suppressor,Growth Suppressor Genes,Metastasis Suppressor Genes,Tumor Suppressor Genes,Anti-Oncogenes,Genes, Onco-Suppressor,Oncogenes, Recessive,Tumor Suppressing Genes,Anti Oncogenes,Anti-Oncogene,Antioncogene,Cancer Suppressor Gene,Emerogene,Gene, Cancer Suppressor,Gene, Growth Suppressor,Gene, Metastasis Suppressor,Gene, Onco-Suppressor,Gene, Tumor Suppressing,Gene, Tumor Suppressor,Genes, Onco Suppressor,Genes, Tumor Suppressing,Growth Suppressor Gene,Metastasis Suppressor Gene,Onco-Suppressor Gene,Onco-Suppressor Genes,Oncogene, Recessive,Recessive Oncogene,Recessive Oncogenes,Suppressor Gene, Cancer,Suppressor Gene, Growth,Suppressor Gene, Metastasis,Suppressor Genes, Cancer,Suppressor Genes, Growth,Suppressor Genes, Metastasis,Tumor Suppressing Gene,Tumor Suppressor Gene

Related Publications

S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
March 1999, Investigative ophthalmology & visual science,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
May 1996, International journal of cancer,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
January 1996, Cancer surveys,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
December 1994, Cancer research,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
February 1998, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
December 1995, Oncogene,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
November 2000, Current surgery,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
July 2013, DNA and cell biology,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
March 1996, International journal of oncology,
S Piccinin, and C Doglioni, and R Maestro, and T Vukosavljevic, and D Gasparotto, and C D'Orazi, and M Boiocchi
March 2001, Experimental cell research,
Copied contents to your clipboard!