A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. 1997

A Reipschläger, and G E Nilsson, and H O Pörtner
Alfred-Wegener-Institut für Polar- und Meeresforschung, Biologie 1/Okophysiologie, Bremerhaven, Germany.

Involvement of neurotransmitters in metabolic depression under hypoxia and hypercapnia was examined in Sipunculus nudus. Concentration changes of several putative neurotransmitters in nervous tissue during anoxic or hypercapnic exposure or during combined anoxia and hypercapnia were determined. Among amino acids (gamma-aminobutyric acid, glutamate, glycine, taurine, serine, and aspartate) and monoamines (serotonin, dopamine, and norepinephrine), some changes were significant, but none were consistent with metabolic depression under all experimental conditions applied. Only the neuromodulator adenosine displayed concentration changes in accordance with metabolic depression under all experimental conditions. Levels increased during anoxia, during hypercapnia, and to an even greater extent during anoxic hypercapnia. Adenosine infusions into coelomic fluid via an indwelling catheter induced a significant depression of the normocapnic rate of O2 consumption from 0.36 +/- 0.04 to a minimum of 0.24 +/- 0.02 (SE) mumol.g-1.h-1 after 90 min (n = 6). Application of the adenosine antagonist theophylline caused a transient rise in O2 consumption 30 min after infusion during hypercapnia but not during normocapnia. Effects of adenosine and theophylline were observed in intact individuals but not in isolated body wall musculature. The results provide evidence for a role of adenosine in inducing metabolic depression in S. nudus, probably through the established effects of decreasing neuronal excitability and neurotransmitter release. In consideration of our previous finding that metabolic depression in isolated body wall musculature was elicited by extracellular acidosis, it is concluded that central and cellular mechanisms combine to contribute to the overall reduction in metabolic rate in S. nudus.

UI MeSH Term Description Entries
D009348 Nematoda A phylum of unsegmented helminths with fundamental bilateral symmetry and secondary triradiate symmetry of the oral and esophageal structures. Many species are parasites. Phasmidia,Secernentea,Sipunculida
D009417 Nerve Tissue Differentiated tissue of the central nervous system composed of NERVE CELLS, fibers, DENDRITES, and specialized supporting cells. Nervous Tissue,Nerve Tissues,Nervous Tissues,Tissue, Nerve,Tissue, Nervous,Tissues, Nerve,Tissues, Nervous
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

A Reipschläger, and G E Nilsson, and H O Pörtner
November 1976, Experimental cell research,
A Reipschläger, and G E Nilsson, and H O Pörtner
June 1966, Journal of immunology (Baltimore, Md. : 1950),
A Reipschläger, and G E Nilsson, and H O Pörtner
November 1979, Science (New York, N.Y.),
A Reipschläger, and G E Nilsson, and H O Pörtner
January 1996, The Journal of experimental biology,
A Reipschläger, and G E Nilsson, and H O Pörtner
August 2000, The Journal of experimental biology,
A Reipschläger, and G E Nilsson, and H O Pörtner
October 2018, International journal of molecular sciences,
A Reipschläger, and G E Nilsson, and H O Pörtner
August 2006, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
A Reipschläger, and G E Nilsson, and H O Pörtner
April 1950, The Biological bulletin,
A Reipschläger, and G E Nilsson, and H O Pörtner
January 2002, Environmental science & technology,
Copied contents to your clipboard!