Effect of chronic hypokalemia on H(+)-K(+)-ATPase expression in rat colon. 1997

J Codina, and T A Pressley, and T D DuBose
Department of Internal Medicine, University of Texas-Houston Medical School 77030, USA.

Although the kidney plays the major role in the regulation of systemic K+ homeostasis, the colon also participates substantively in K+ balance. The colon is capable of both K+ absorption and secretion, the magnitude of which can be modulated in response to dietary K+ intake. The H(+)-K(+)-adenosinetriphosphatase (H(+)-K(+)-ATPase) has been proposed as a possible mediator of K+ absorption in distal colon, but inhibitor profiles obtained in recent studies suggest that two, and perhaps more, distinct H(+)-K(+)-ATPase activities may be present in mammalian distal colon. We have developed highly specific probes for the catalytic alpha-subunits of colonic and gastric H(+)-K(+)-ATPase, alpha 1-Na(+)-K(+)-ATPase, and beta-actin, which were used in Northern analysis of total RNA from whole distal colon and stomach obtained from one of three experimental groups of rats: 1) controls, 2) chronic dietary K+ depletion, and 3) chronic metabolic acidosis. The probe for the colonic but not the gastric H(+)-K(+)-ATPase alpha-isoform hybridized to distal colon total RNA in all groups. A significant increase in colonic H(+)-K(+)-ATPase mRNA abundance was observed in response to chronic dietary K+ depletion but not to chronic metabolic acidosis. The alpha 1-isoform of Na(+)-K(+)-ATPase, which is also expressed in distal colon, did not respond consistently to either chronic dietary K+ depletion or chronic metabolic acidosis. The gastric probe did not hybridize to total RNA from distal colon but, as expected, hybridized to total stomach RNA. However, the abundance of gastric H(+)-K(+)-ATPase or Na(+)-K(+)-ATPase in stomach was not altered consistently by either chronic dietary K+ depletion or metabolic acidosis. Under the conditions of this study, it appears that the mRNA encoding the colonic alpha-isoform is upregulated by chronic dietary K+ restriction, a condition shown previously to increase K+ absorption in the distal colon.

UI MeSH Term Description Entries
D007008 Hypokalemia Abnormally low potassium concentration in the blood. It may result from potassium loss by renal secretion or by the gastrointestinal route, as by vomiting or diarrhea. It may be manifested clinically by neuromuscular disorders ranging from weakness to paralysis, by electrocardiographic abnormalities (depression of the T wave and elevation of the U wave), by renal disease, and by gastrointestinal disorders. (Dorland, 27th ed) Hypopotassemia,Hypokalemias,Hypopotassemias
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs

Related Publications

J Codina, and T A Pressley, and T D DuBose
April 1996, The American journal of physiology,
J Codina, and T A Pressley, and T D DuBose
August 2002, European journal of biochemistry,
J Codina, and T A Pressley, and T D DuBose
August 1996, The American journal of physiology,
J Codina, and T A Pressley, and T D DuBose
March 1994, The American journal of physiology,
J Codina, and T A Pressley, and T D DuBose
February 1996, The Histochemical journal,
J Codina, and T A Pressley, and T D DuBose
April 2000, The Journal of biological chemistry,
J Codina, and T A Pressley, and T D DuBose
April 2004, Annals of surgery,
J Codina, and T A Pressley, and T D DuBose
January 1992, The Japanese journal of physiology,
J Codina, and T A Pressley, and T D DuBose
September 1998, The American journal of physiology,
Copied contents to your clipboard!