Differential expression in glial cells derived from chick embryo cerebral hemispheres at an advanced stage of development. 1997

S Kentroti, and A Vernadakis
Department of Pharmacology, University of Colorado Health Sciences Center, Denver.

Recently, we have characterized glial cultures derived from very early neurogenesis (E3) and found them to consist largely of early glioblastic or astroblastic cells with the capacity to differentiate into astrocytes given sufficient time in culture or with advancing age, i.e., cell passage. This study examines and compares the characteristics of astrocyte-enriched cultures derived from advanced embryonic ages (E15) in the chick embryonic cerebral hemispheres. We report several remarkable findings. 1) Mature astrocytes (GFAP+, vimentin-) appear as early as 5 days in vitro (DIV) in primary culture (P0). 2) Also apparent in primary cultures were extensive populations of neurons (neurofilament+; NF+) growing atop or in close proximity to mature astrocytes. 3) NF+ neurons disappeared after the first cell passage, and GFAP+ astrocytes were greatly diminished within two cell passages thereafter. 3) High concentrations of NGF were expressed, presumably by glial cells, in primary cultures through 14 DIV, declining to a low plateau through 27 DIV and remaining low, but measurable in subsequent cell passages. 4) At later cell passages (> 5) immature phenotypes of these same cell types continued to be expressed in E15CH cultures, i.e., positive staining for GFAP and vimentin and GFAP, GS, and NGF can all be detected on Western blots. We conclude from these findings that 1) mitotic multipotential neural cells are present within cerebral hemispheres even at late stages of development (E15); 2) neuroblasts and astroblasts have a reciprocal relationship requiring the presence of both cell types in order for mature expression of their phenotypes; 3) the NGF profile parallels the appearance and disappearance of neurons in E15 chick embryonic cerebral hemisphere primary cultures, strongly suggesting that this trophic factor may be involved in the mutually beneficial relationship between astrocytes and neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

S Kentroti, and A Vernadakis
February 1981, Biochemical Society transactions,
S Kentroti, and A Vernadakis
June 1954, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S Kentroti, and A Vernadakis
January 1978, Developmental neuroscience,
S Kentroti, and A Vernadakis
January 1971, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
S Kentroti, and A Vernadakis
January 1974, Archives internationales de physiologie et de biochimie,
S Kentroti, and A Vernadakis
February 1975, Canadian journal of biochemistry,
S Kentroti, and A Vernadakis
February 1983, Archives of biochemistry and biophysics,
Copied contents to your clipboard!