Defective Friend spleen focus-forming virus: interfering properties and isolation free from standard leukemia-inducing helper virus. 1977

R J Eckner, and K L Hettrick

Defective Friend spleen focus-forming virus (SFFV) is able to interfere with the ability of its naturally occurring leukemia-inducing helper virus (LLV-F) to induce XC plaque formation in several different strains of mouse embryo cells. This interference has been observed by using two different SFFV preparations, one contained in an NB-tropic stock of Friend virus (FV) complex, and the second present in a C57BL-adapted strain of FV complex containing an associated B-tropic LLV-F helper. The LLV-F in NB-tropic FV complex effectively induced XC plaques in C57BL/6 (Fv-1(bb); Fv-2(rr)) mouse embryo fibroblasts (MEF) only in the absence of coinfecting SFFV, indicating that Fv-2-associated resistance to SFFV-induced focus formation in vivo does not necessarily extend to the restriction of SFFV function(s) in vitro (i.e., in Fv-2(rr) C57BL MEF). SFFV interference appears to be an intracellular event since LLV-F can adsorb onto, penetrate, and rescue defective murine sarcoma virus (MSV) from transformed 3T3FL S(+)L(-) cells with equal efficiency in the presence and absence of SFFV. However, significantly fewer LLV-infected S(+)L(-) cells released LLV-F progeny if SFFV was present. These observations suggest that Friend SFFV may be classified as a defective, interfering (DI) particle. Further support for this conclusion has come from studies designed to investigate two physical properties of defective SFFV particles. SFFV layered onto a 0 to 20% sucrose sedimentation gradient was recovered as a symmetrical band of virus that sedimented more slowly than standard LLV-F particles. Pooled SFFV-containing gradient samples contained visualizable type C virus particles and occasionally small amounts of detectable LLV-F. In an attempt to determine the buoyant density of sedimentation gradient-purified SFFV, pooled SFFV samples were layered onto a 25 to 50% sucrose equilibrium density gradient and were centrifuged to equilibrium. Greater than 50% of the infectious SFFV originally layered onto this gradient was recovered and seen as a narrow symmetrical band with peak SFFV infectivity at a sucrose density of 1.14 g/ml. The observed difference between SFFV and LLV-F buoyant densities appears to be related to an inherent physical property of each virus. Mixtures of these two viruses express the buoyant density of that virus population which is in excess in fabricated FV complexes probably due to the formation of SFFV-LLV aggregates. Finally, gradient-purified SFFV failed to induce XC plaques in MEF and did not function to rescue MSV as expected since SFFV itself is replication defective.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003673 Defective Viruses Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus. Incomplete Viruses,Defective Hybrids,Defective Hybrid,Defective Virus,Hybrid, Defective,Hybrids, Defective,Incomplete Virus,Virus, Defective,Virus, Incomplete,Viruses, Defective,Viruses, Incomplete
D005260 Female Females
D005622 Friend murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) producing leukemia of the reticulum-cell type with massive infiltration of liver, spleen, and bone marrow. It infects DBA/2 and Swiss mice. Friend Virus,Rowson-Parr Virus,Rowson Parr Virus,Virus, Friend,Virus, Rowson-Parr
D006378 Helper Viruses Viruses which enable defective viruses to replicate or to form a protein coat by complementing the missing gene function of the defective (satellite) virus. Helper and satellite may be of the same or different genus. Helper Virus,Virus, Helper,Viruses, Helper
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014762 Viral Interference A phenomenon in which infection by a first virus results in resistance of cells or tissues to infection by a second, unrelated virus. Interference, Viral,Interferences, Viral,Viral Interferences

Related Publications

R J Eckner, and K L Hettrick
June 1971, Journal of the National Cancer Institute,
R J Eckner, and K L Hettrick
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
R J Eckner, and K L Hettrick
February 1975, Journal of the National Cancer Institute,
R J Eckner, and K L Hettrick
March 1976, Journal of the National Cancer Institute,
R J Eckner, and K L Hettrick
November 1982, The Journal of general virology,
Copied contents to your clipboard!