Differential regulation of the Wilms' tumor gene, WT1, during differentiation of embryonal carcinoma and embryonic stem cells. 1997

V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
Laboratory of Molecular Carcinogenesis, Sylvius Laboratories, Leiden University, The Netherlands.

The expression pattern of the Wilms' tumor suppressor gene, WT1, during embryonal development suggests a role for the WT1 proteins in the differentiation of specific tissues. This notion is supported by the observation that WT1 knock-out mice fall to develop kidneys and gonads. We describe here the changes in the expression and DNA binding activity of the WT1 gene product in P19 embryonal carcinoma cells and embryonic stem cells triggered to differentiate by either retinoic acid (RA) or DMSO. In exponentially growing P19 embryonal carcinoma (EC) cells, WT1 mRNA and proteins were undetectable. During RA-induced but not DMSO-induced differentiation of P19 EC cells, WT1 expression and DNA binding are strongly activated. Treatment of embryonic stem cells with RA resulted in a similar activation of WT1. Immunohistochemical analysis showed that WT1 is expressed in endodermal, glial, and epithelial cell types. In addition, DNA binding by EGR-1, a transcription factor structurally related to WT1, increased during differentiation of P19 EC and embryonic stem cells. To investigate the possible functional consequences of DNA binding by WT1, we examined the expression levels of two putative transcriptional targets of WT1, the insulin-like growth factor 1 receptor and epidermal growth factor receptor. We found that after an initial induction, decreasing expression of the insulin-like growth factor I receptor is correlated with increasing WT1 expression. Our results demonstrate that expression of WT1 is induced in specific cell types during RA-induced differentiation of P19 EC cells, reflecting the tissue-specific expression of WT1 in vivo. Therefore, we believe that P19 EC cells are a suitable system to study activation and function of WT1 during differentiation.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid

Related Publications

V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
April 1994, Blood,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
April 1996, The Journal of biological chemistry,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
December 1991, Mechanisms of development,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
December 2008, Gynecologic oncology,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
September 1993, Differentiation; research in biological diversity,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
January 1999, Contributions to nephrology,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
March 2001, Experimental cell research,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
December 2001, The Journal of clinical endocrinology and metabolism,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
March 1999, Molecular and cellular biology,
V Scharnhorst, and O Kranenburg, and A J van der Eb, and A G Jochemsen
July 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!