Analysis of MAGE-3-specific cytolytic T lymphocytes in human leukocyte antigen-A2 melanoma patients. 1997

D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
Ludwig Institute for Cancer Research, University of Lausanne, Switzerland.

The MAGE-3 gene is a member of a multigene family that is selectively expressed by subsets of different human tumor types, including malignant melanoma, but not by normal tissues except for testis and placenta. A cytolytic T lymphocyte (CTL)-defined MAGE-3 antigen, corresponding to the MAGE-3 peptide 271-279 associated with the human leukocyte antigen (HLA)-A2 molecule, has been recently identified using T lymphocytes from a normal individual stimulated in vitro with peptide-pulsed autologous antigen-presenting cells. Because MAGE-3 is expressed in 76% of metastatic melanomas, the HLA-A2-restricted MAGE-3 antigen should be expressed by approximately 37% of Caucasians bearing a metastatic melanoma tumor, thus representing an attractive candidate for the elicitation of specific CTL immune responses in vivo. In this study, we determined the proportion of HLA-A2+ melanoma patients displaying detectable MAGE-3 peptide 271-279-specific CTL precursors in peripheral blood. Peptide-specific CTL populations were obtained from at least 4 of 11 HLA-A2+ patients. Peptide-specific CTL lines derived from these populations readily lysed HLA-A2-positive target cells that were pulsed with MAGE-3 peptide 271-279 at nanomolar concentrations yet were unable to recognize (as assessed by cytolysis and cytokine production) MAGE-3-expressing autologous or allogeneic HLA-A2-positive melanoma lines. Similarly, the CTL lines failed to recognize MAGE-3-negative HLA-A2-positive tumor lines after transfection with the MAGE-3 gene, although they were able to recognize COS-7 cells transfected with MAGE-3. In contrast, HLA-A1-positive melanoma lines transfected with MAGE-3 were efficiently recognized by CTL lines directed against the MAGE-3 peptide 168-176, a known HLA-A1-restricted CTL epitope. These results suggest that the expression level of the MAGE-3 peptide 271-279, unlike that of MAGE-3 peptide 168-176, in melanomas may be too low to allow efficient recognition by specific CTLs. Thus, it appears that despite the presence of CTL precursors against MAGE-3 peptide 271-279 in some HLA-A2+ melanoma patients, the usefulness of this peptide for specific immunotherapy of melanoma may be limited.

UI MeSH Term Description Entries
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor

Related Publications

D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
March 1994, The Journal of experimental medicine,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
June 1999, Journal of immunology (Baltimore, Md. : 1950),
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
December 1994, European journal of immunology,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
September 1993, International journal of cancer,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
December 2005, Cancer immunology, immunotherapy : CII,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
October 1999, European journal of immunology,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
October 1995, The Journal of experimental medicine,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
January 1993, European journal of immunology,
D Valmori, and D Liénard, and G Waanders, and D Rimoldi, and J C Cerottini, and P Romero
May 2000, Clinical and diagnostic laboratory immunology,
Copied contents to your clipboard!