Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. 1997

P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.

Voltage-dependent potentiation of skeletal muscle L-type calcium channels requires phosphorylation by cAMP-dependent protein kinase (PKA) that is localized by binding to a cAMP-dependent protein kinase-anchoring protein (AKAP). L-type calcium channels purified from rabbit skeletal muscle contain an endogenous co-purifying protein kinase activity that phosphorylates the alpha1 and beta subunits of the channel. The co-purifying kinase also phosphorylates a known PKA peptide substrate, is stimulated by cAMP, and is inhibited by PKA inhibitor peptide-(5-24), indicating that it is PKA. PKA activity co-immunoprecipitates with the calcium channel, suggesting that the channel and the kinase are physically associated. Using biotinylated type II regulatory subunit of PKA (RII) as a probe, we have identified a 15-kDa RII-binding protein in purified calcium channel preparations, which we have designated AKAP-15. Anti-peptide antibodies directed against the alpha1 subunit of the calcium channel co-immunoprecipitate AKAP-15. Together, these findings demonstrate a physical link between PKA and the calcium channel and suggest that AKAP-15 may mediate their interaction.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
October 1999, The Journal of biological chemistry,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
June 1998, Current opinion in neurobiology,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
December 2000, The Journal of biological chemistry,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
March 2014, The Journal of general physiology,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
February 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
August 1995, Journal of neuroscience research,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
April 2007, Nature cell biology,
P C Gray, and V C Tibbs, and W A Catterall, and B J Murphy
October 1985, Archives of biochemistry and biophysics,
Copied contents to your clipboard!