Analysis of 4-1BBL and laminin binding to murine 4-1BB, a member of the tumor necrosis factor receptor superfamily, and comparison with human 4-1BB. 1997

D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA.

The T cell activation antigen 4-1BB (CDw137) is a distantly related member of the tumor necrosis factor receptor family of cell surface receptors. We previously reported that murine 4-1BB (m4-1BB) bound to extracellular matrix (ECM) proteins. Recently, a tumor necrosis factor-like ligand of m4-1BB, m4-1BBL, as well as the human counterparts of 4-1BB (ILA) and 4-1BBL (h4-1BB and h4-1BBL, respectively) have been cloned. No information is currently available on how binding of m4-1BB to ECM proteins affects its binding to m4-1BBL and vice versa and if the ability of m4-1BB to bind ECM proteins is conserved across species. We report that binding of m4-1BBL to m4-1BB blocked its ability to bind laminin (LN), while binding of m4-1BB to LN did not block its ability to bind m4-1BBL. Furthermore, binding of m4-1BBL to the m4-1BB.LN complex did not displace LN. These findings suggest the two ligands bind to proximal but distinct sites on m4-1BB. This is supported by the observation that six of eight anti-m4-1BB monoclonal antibodies blocked the interaction between 4-1BB and 4-1BBL, while seven blocked LN binding. Ligand and monoclonal antibody binding studies with a truncated protein lacking the amino-terminal LN-homologous domain of m4-1BB demonstrated that regions downstream of the LN-homologous domain participate in LN binding and that the intact protein is required for m4-1BBL binding. Studies with h4-1BB showed that h4-1BB only bound h4-1BBL, indicating that the ECM binding activity of 4-1BB is not conserved across species. This finding allowed the construction of murine/human 4-1BB chimeras, which permitted further dissection of the regions of 4-1BB involved in LN and 4-1BBL binding and suggests that sequence differences in the LN-homologous domain of h4-1BB in part account for the inability of h4-1BB to bind ECM proteins.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
December 2005, Blood,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
November 1999, Genomics,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
November 1998, International immunology,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
June 2018, The Journal of biological chemistry,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
January 1995, Journal of inflammation,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
January 2009, Advances in experimental medicine and biology,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
April 1993, European journal of immunology,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
May 2009, Immunological reviews,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
March 2010, The Journal of biological chemistry,
D T Loo, and N J Chalupny, and J Bajorath, and W W Shuford, and R S Mittler, and A Aruffo
January 2018, The Journal of biological chemistry,
Copied contents to your clipboard!