On the mechanisms of immunodominance in cytotoxic T lymphocyte responses to minor histocompatibility antigens. 1997

S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
Department of Medicine, University of Montréal, Canada.

Although there are numerous minor histocompatibility antigens (MiHA), T cell responses leading to graft-versus-host (GVH) and graft-versus-tumor effects involve only a small number of immunodominant MiHA. The goal of the present study was to analyze at the cellular and molecular levels the mechanisms responsible for MiHA immunodominance. Cytotoxic T lymphocytes (CTL) generated in eight combinations of H2b strains of mice were tested against syngeneic targets sensitized with HPLC-fractionated peptides eluted from immunizing cells. The number of dominant MiHA was found to range from as little as two up to ten depending on the strain combination used. The nature of dominant MiHA was influenced by both the antigen profile of the antigen-presenting cells (APC) and the repertoire of responding CTL. When C57BL/6 dominant MiHA (B6dom) and H-Y were presented on separate APC, they showed similar immunogenicity. In contrast, when they were presented on the same APC, B6dom MiHA totally dominated H-Y. B6dom MiHA did not suppress anti-H-Y responses by acting as T cell receptor antagonists for anti-H-Y CTL, nor were anti-B6dom CTL precursors more abundant than anti-H-Y CTL precursors. Dominance resulted from competition for the APC surface between anti-B6dom and anti-H-Y CTL; the crucial difference between the dominant and the dominated MiHA appears to depend on the differential avidity of their respective CTL for APC. The only B6dom epitope thus far identified is the nonapeptide AAPDNRETF presented by H2-D(b). We found that compared with other known D(b)-binding peptides, AAPDNRETF is expressed at very high levels on the cell surface, binds to the D(b) molecule with very high affinity, and dissociates very slowly from its presenting class I molecule. These data indicate that one cannot predict which MiHA will be dominant or dominated based simply on their respective immunogenicity when presented on separate APC. Indeed, the avidity of T cell/APC interactions appears to determine which antigen(s) will trigger T cell responses when numerous epitopes are presented by the same APC.

UI MeSH Term Description Entries
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005260 Female Females
D006182 H-Y Antigen A sex-specific cell surface antigen produced by the sex-determining gene of the Y chromosome in mammals. It causes syngeneic grafts from males to females to be rejected and interacts with somatic elements of the embryologic undifferentiated gonad to produce testicular organogenesis. HY Antigen,GA-1 Germ Cell Antigen,Antigen, H-Y,Antigen, HY,GA 1 Germ Cell Antigen,H Y Antigen

Related Publications

S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
September 1993, International immunology,
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
January 1982, Advances in experimental medicine and biology,
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
February 1988, Journal of immunology (Baltimore, Md. : 1950),
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
July 1999, European journal of immunology,
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
October 1982, Immunology,
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
December 1990, Journal of immunology (Baltimore, Md. : 1950),
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
March 1998, Blood,
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
September 1981, Transplantation,
S Pion, and P Fontaine, and M Desaulniers, and J Jutras, and J G Filep, and C Perreault
January 1999, Annual review of immunology,
Copied contents to your clipboard!