The effect of intracerebroventricularly administered GABA on brain monoamine metabolism. 1977

B Biswas, and A Carlsson

Intracerebroventricular injection of gamma-aminobutyric acid (GABA) was performed in male rats and the brain monoamines, 5-hydroxyindoleacetic acid (5-HIAA), tyrosine and tryptophan levels were measured. GABA induced within 30 min a marked dose-dependent increase in the brain contents of dopamine (DA), serotonin (5-HT), tyrosine and tryptophan, while noradrenaline (NA) was lowered. Large doses of GABA, i.e. 1.5-3 mg/rat, were required for these effects. Aminooxyacetic acid (AOAA), an inhibitor of GABA-transaminase, when given alone in a dose of 25 mg/kg i.p. caused a significant rise of DA, 5-HT and tryptophan. The combination of GABA and AOAA raised these levels more than either agent alone. Picrotoxin (4 mg/kg, i.p.) a claimed GABA receptor antagonist partially counteracted the GABA-induced DA rise. Monoamine synthesis was studied in different parts of the brain by measuring the accumulated dopa and 5-hydroxytryptophan (5-HTP), 30 min after NSD 1015 (3-hydroxybenzylhydrazine HCl, 100 mg/kg) an inhibitor of aromatic L-amino-acid decarboxylase, given i.p. 5 min after GABA. GABA caused a marked rise in dopa formation both in DA- and NA-predominated brain regions. Also 5-HTP formation was enhanced. The effects on both dopa and 5-HTP formation showed marked regional differences. The data suggest that GABA, by activating specific receptors, causes inhibition of firing of dopaminergic neurones and the opposite effect on the noradrenergic neurones. The nature of the effect on 5-HT metabolism needs further investigation.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D000613 Aminobutyrates Derivatives of BUTYRIC ACID that contain one or more amino groups attached to the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure. Aminobutyric Acids,Aminobutyric Acid,Acid, Aminobutyric,Acids, Aminobutyric
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Biswas, and A Carlsson
January 1986, General pharmacology,
B Biswas, and A Carlsson
April 1974, Acta physiologica Scandinavica,
B Biswas, and A Carlsson
May 1984, Acta pharmacologica et toxicologica,
B Biswas, and A Carlsson
February 1978, Canadian journal of physiology and pharmacology,
B Biswas, and A Carlsson
January 1985, Acta endocrinologica,
B Biswas, and A Carlsson
December 1977, Naunyn-Schmiedeberg's archives of pharmacology,
B Biswas, and A Carlsson
May 1976, European journal of pharmacology,
Copied contents to your clipboard!