Crystal structure of a class I ubiquitin conjugating enzyme (Ubc7) from Saccharomyces cerevisiae at 2.9 angstroms resolution. 1997

W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
Department of Pathology, University of Alabama at Birmingham 35253, USA.

Ubiquitin-conjugating enzymes are a family of related proteins that participate in the ubiquitination of proteins. Previous studies on the crystal structures of Saccharomyces cerevisiae Ubc4 and Arabidopsis thaliana Ubc1 indicated that the smallest enzymes (class I), which consist entirely of the conserved core domain, share a common tertiary fold. Here we report the three-dimensional structure of the S. cerevisiae class I enzyme encoded by the UBC7 gene. The crystal structure has been solved using molecular replacement techniques and refined by simulated annealing to an R-factor of 0.183 at 2.93 A resolution. Bond lengths and angles in the molecule have root-mean-square deviations from ideal values of 0.016 A and 2.3 degrees, respectively. Ubc7 is an alpha/beta protein with four alpha-helices and a four-stranded antiparallel beta-sheet. With the exception of two regions where extra residues are present, the tertiary folding of Ubc7 is similar to those of the other two enzymes. The ubiquitin-accepting cysteine is located in a cleft between two loops. One of these loops is nonconserved, as this region of the Ubc7 molecule differs from the other two enzymes by having 13 extra residues. There is also a second single amino acid insertion that alters the orientation of the turn between the first two beta-strands. Analysis of the 13 ubiquitin-conjugating enzyme sequences in S. cerevisiae indicates that there may be two other regions where extra residues could be inserted into the common tertiary fold. Both of these other regions exhibit significant deviations in the superposition of the three structures and, like the two insertion regions in Ubc7, may represent hypervariable regions within a common tertiary fold. As ubiquitin-conjugating enzymes interact with different substrates or other accessory proteins in the ubiquitination pathway, these variable surface regions may confer distinct specificity to individual enzymes.

UI MeSH Term Description Entries
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014452 Ubiquitins A family of proteins that are structurally-related to Ubiquitin. Ubiquitins and ubiquitin-like proteins participate in diverse cellular functions, such as protein degradation and HEAT-SHOCK RESPONSE, by conjugation to other proteins. Ubiquitin-Like Protein,Ubiquitin-Like Proteins,Protein, Ubiquitin-Like,Proteins, Ubiquitin-Like,Ubiquitin Like Protein,Ubiquitin Like Proteins
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D044763 Ubiquitin-Conjugating Enzymes A class of enzymes that form a thioester bond to UBIQUITIN with the assistance of UBIQUITIN-ACTIVATING ENZYMES. They transfer ubiquitin to the LYSINE of a substrate protein with the assistance of UBIQUITIN-PROTEIN LIGASES. Ubiquitin-Conjugating Enzyme,HHR6 Protein,Ubiquitin-Conjugating Enzyme E2,E2, Ubiquitin-Conjugating Enzyme,Enzyme E2, Ubiquitin-Conjugating,Enzyme, Ubiquitin-Conjugating,Enzymes, Ubiquitin-Conjugating,Ubiquitin Conjugating Enzyme,Ubiquitin Conjugating Enzyme E2,Ubiquitin Conjugating Enzymes

Related Publications

W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
March 1998, The Journal of biological chemistry,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
February 1996, Protein expression and purification,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
April 2006, Acta crystallographica. Section F, Structural biology and crystallization communications,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
August 2005, Journal of biomolecular NMR,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
September 1992, Biochimica et biophysica acta,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
May 1999, Biochemistry,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
January 2000, Proteins,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
January 2002, Journal of biomolecular NMR,
W J Cook, and P D Martin, and B F Edwards, and R K Yamazaki, and V Chau
August 2004, Proteins,
Copied contents to your clipboard!