Localization of dopamine D1A receptor protein and messenger ribonucleic acid in rat adrenal cortex. 1997

A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
Department of Pharmacology and Therapeutics, University College Cork, Ireland.

Pharmacological, physiological, and autoradiographic studies have suggested the presence of dopamine receptors in the adrenal gland. Dopaminergic ligands have been shown to modulate adrenocortical aldosterone biosynthesis and secretion as well as adrenomedullary catecholamine production and release. Using a combination of light microscopic immunochemistry and in situ amplification and hybridization, the present study sought to determine the site-specific expression of the recently cloned D1A receptor subtype in rat adrenal gland. Light microscopic immunohistochemistry was conducted using polyclonal antisera raised to the putative rat D1A receptor. Immunoreactive product was detected using an avidin-biotin immunoperoxidase method. D1A receptor messenger RNA (mRNA) was detected using a transcription-based isothermal in situ amplification and hybridization approach using receptor-specific mRNA oligonucleotide probes. The amplified product was localized using an alkaline phosphatase 4-nitro blue tetrazolium chloride/5-bromo-4-chloro-3-indolyl-phosphate technique. This combined experimental approach, using both receptor subtype-selective antibodies and oligonucleotide probes, allows for the site-specific localization of the D1A receptor subtype, which would otherwise not be possible with the pharmacological methods currently available. The D1A receptor protein and mRNA were expressed solely in the zona glomerulosa of the rat adrenal gland, with no signal evident in any of the other cortical layers or in the medulla. Such a distribution raises the possibility that the D1A receptor subtype could modulate, at least in part, some of the known effects of dopamine on aldosterone secretion.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
June 1995, The American journal of physiology,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
September 1993, Endocrinology,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
January 1993, Annals of clinical and laboratory science,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
December 1988, Molecular endocrinology (Baltimore, Md.),
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
March 1999, Biology of reproduction,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
December 2000, The Journal of endocrinology,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
January 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
November 1983, Endocrinology,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
April 1964, National Cancer Institute monograph,
A M Aherne, and C J Vaughan, and R M Carey, and D P O'Connell
July 1995, Endocrinology,
Copied contents to your clipboard!