Induction of tyrosine hydroxylase protein and a transgene containing tyrosine hydroxylase 5' flanking sequences by stress in mouse adrenal gland. 1997

C A Osterhout, and D M Chikaraishi, and A W Tank
Department of Pharmacology and Physiology, University of Rochester Medical Center, New York 14642, USA.

Prolonged stress is associated with the induction of tyrosine hydroxylase (TH) gene expression in rat adrenal medulla. We have used transgenic mice expressing a transgene encoding 4.5 kb of rat TH gene 5' flanking region fused upstream of the structural gene encoding chloramphenicol acetyltransferase (CAT) to test whether cold exposure or immobilization stress regulates TH gene expression in mouse adrenal gland. Exposure of mice to cold for 3 days increases adrenal TH protein and enzymatic activity. Cold exposure also increases adrenal TH-CAT expression two- to threefold. Immobilization stress induces mouse adrenal TH-CAT expression after either one immobilization or multiple immobilizations. TH-CAT expression increases transiently after a single immobilization, but after multiple immobilizations the induction of TH-CAT is sustained for at least 24 h. TH protein and TH enzymatic activity in mouse adrenal gland are elevated 2.8-fold and 1.5-fold, respectively, after seven immobilizations, but are not increased after either one, two, or three immobilizations. These results indicate that cold exposure and immobilization stress induce adrenal TH gene expression at least partially by stimulating the transcription rate of the TH gene. Furthermore, as observed in the rat, multiple mechanisms apparently regulate adrenal TH gene transcription rate and TH enzyme induction depending on whether mice are subjected to a single immobilization or multiple immobilizations. Our results indicate that these transgenic mice are an excellent model system to study the molecular mechanisms regulating TH gene expression in adrenal medulla.

UI MeSH Term Description Entries
D007103 Immobilization The restriction of the MOVEMENT of whole or part of the body by physical means (RESTRAINT, PHYSICAL) or chemically by ANALGESIA, or the use of TRANQUILIZING AGENTS or NEUROMUSCULAR NONDEPOLARIZING AGENTS. It includes experimental protocols used to evaluate the physiologic effects of immobility. Hypokinesia, Experimental,Experimental Hypokinesia,Experimental Hypokinesias,Hypokinesias, Experimental
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase
D015500 Chloramphenicol O-Acetyltransferase An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28. CAT Enzyme,Chloramphenicol Acetyltransferase,Chloramphenicol Transacetylase,Acetyltransferase, Chloramphenicol,Chloramphenicol O Acetyltransferase,Enzyme, CAT,O-Acetyltransferase, Chloramphenicol,Transacetylase, Chloramphenicol

Related Publications

C A Osterhout, and D M Chikaraishi, and A W Tank
November 1989, Journal of neurochemistry,
C A Osterhout, and D M Chikaraishi, and A W Tank
June 1993, Molecular and cellular neurosciences,
C A Osterhout, and D M Chikaraishi, and A W Tank
December 1991, Journal of neurochemistry,
C A Osterhout, and D M Chikaraishi, and A W Tank
July 1971, Archives of biochemistry and biophysics,
C A Osterhout, and D M Chikaraishi, and A W Tank
October 1969, The Journal of pharmacology and experimental therapeutics,
C A Osterhout, and D M Chikaraishi, and A W Tank
September 1972, Neuropharmacology,
C A Osterhout, and D M Chikaraishi, and A W Tank
August 1972, The Journal of laboratory and clinical medicine,
C A Osterhout, and D M Chikaraishi, and A W Tank
January 1974, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!