Modulation of large conductance Ca2+-activated K+ channel by Galphah (transglutaminase II) in the vascular smooth muscle cell. 1997

M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
Departments of Physiology and Biochemistry, College of Medicine, Chung-Ang University, Seoul 156-756, Korea.

Among G-proteins, Gh is unique in structural differences in the GTP-binding domain and possessing transglutaminase activity. We have studied the role of G protein in modulation of large conductance Ca2+-activated K+ (Maxi-K+) channel by the inside-out mode of patch clamp in smooth muscle cells from superior mesenteric artery of the rabbit. When the non-hydrolyzable GTP analogue, GTPgammaS, was applied, the channel activity was increased about 2.5-fold. Addition of GDPbetaS resulted in reversal of the GTPgammaS effect. When the Galphah7 antibody was applied, the GTPgammaS-stimulated channel activity was significantly inhibited to control level, suggesting that Galphah is involved in activation of the Maxi-K+ channel in smooth muscle cells.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000091345 Protein Glutamine gamma Glutamyltransferase 2 Calcium-dependent acyltransferase that catalyzes cross-linking of proteins at a GLUTAMINE in one chain with primary amine such as in LYSINE in another chain. In addition it can also accept monoamine substrates to catalyze post-translational modifications (e.g., protein serotonylation). TGM2 Proteins,Tissue Transglutaminase,Tissue-Type Transglutaminase,Transglutaminase 2,Transglutaminase C,Transglutaminase II,TGase II,Proteins, TGM2,Tissue Type Transglutaminase,Transglutaminase, Tissue,Transglutaminase, Tissue-Type
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP
D051036 Large-Conductance Calcium-Activated Potassium Channels A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues. BK Channel,Big K Channel,Large-Conductance Calcium-Activated Potassium Channel,Maxi K Channel,Maxi-K Channel,MaxiK Channel,BK Channels,Big K Channels,Maxi-K Channels,MaxiK Channels,Channel, BK,Channel, Big K,Channel, Maxi K,Channel, Maxi-K,Channel, MaxiK,K Channel, Big,K Channel, Maxi,Large Conductance Calcium Activated Potassium Channel,Large Conductance Calcium Activated Potassium Channels,Maxi K Channels
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory
D020558 GTP Phosphohydrolases Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-. GTPase,GTPases,Guanosine Triphosphate Phosphohydrolases,Guanosinetriphosphatases,GTP Phosphohydrolase,Phosphohydrolase, GTP,Phosphohydrolases, GTP,Phosphohydrolases, Guanosine Triphosphate,Triphosphate Phosphohydrolases, Guanosine

Related Publications

M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
January 2022, Frontiers in cardiovascular medicine,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
June 2009, American journal of physiology. Heart and circulatory physiology,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
November 2006, American journal of physiology. Heart and circulatory physiology,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
January 2003, European journal of pharmacology,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
January 1986, Membrane biochemistry,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
May 2004, Naunyn-Schmiedeberg's archives of pharmacology,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
September 2012, Drug discovery today,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
December 2006, British journal of pharmacology,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
January 2006, Biological research,
M Y Lee, and S Chung, and H W Bang, and K J Baek, and D Uhm
April 2019, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!