Effect of sialoadenectomy and epidermal growth factor administration on liver regeneration after partial hepatectomy. 1997

L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
Laboratory of Experimental Surgery, University of Louvain Medical School, Brussels, Belgium.

Epidermal growth factor (EGF), a mitogen in vitro for hepatocytes, produces in various cell lines changes similar to those observed very rapidly in hepatocytes after partial hepatectomy (PH). These changes include ion movements, membrane hyperpolarization and proto-oncogene expression. A stimulatory effect of EGF on liver regeneration can therefore tentatively be associated with the events occurring within the first 3 hours after a PH, sometimes referred to as the "priming phase." To assess this hypothesis, we examined in Wistar rats the effect of EGF deprivation produced by sialoadenectomy (SX) performed before or after a PH of 70%. SX at the time of PH significantly decreased the 3H-thymidine uptake in the DNA 24 hours later (147 +/- 14 DPM per microgram of DNA, mean +/- SE) compared with a simple PH (322 +/- 16; P < .01), but also compared with results obtained when PH is combined with a sham sialoadenectomy (SSX) or in rats pair-fed with the sialoadenectomized rats. This incomplete inhibition was confirmed by a decreased rise in thymidine kinase (TK) activity and by reduced proliferating cell nuclear antigen (PCNA) labeling and mitotic indices 30 hours after PH. By contrast, SX did not inhibit the early expression of c-jun and c-fos, or of c-myc, 30 or 120 minutes after PH, respectively. A reduction of DNA synthesis was also obtained when SX was performed 3 hours after PH (127 +/- 15 DPM per microgram of DNA vs. 350 +/- 21 in SSX; P < .001) but not when SX was delayed until the 6th or the 17th hour after PH. It was sufficient to administer EGF (40 microg) from the third to the ninth hour to correct the reduction of [3H]thymidine uptake in rats sialoadenectomized before PH. These results indicate that the diminished EGF availability following SX decreases or at least delays liver regeneration, and that the effect of EGF on liver regeneration does not seem related to the early changes of proto-oncogene expression, but rather to events occuring later, at the time of reported internalization and binding of EGF to its nuclear receptors.

UI MeSH Term Description Entries
D008115 Liver Regeneration Repair or renewal of hepatic tissue. Liver Regenerations,Regeneration, Liver,Regenerations, Liver
D008297 Male Males
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006498 Hepatectomy Excision of all or part of the liver. (Dorland, 28th ed) Hepatectomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012469 Salivary Glands Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND). Gland, Salivary,Glands, Salivary,Salivary Gland
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016755 Proto-Oncogene Proteins c-jun Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun. c-fos-Associated Protein p39,c-jun Proteins,fos-Associated Protein p39,jun B Proteins,jun D Proteins,jun Proto-Oncogene Proteins,p39(c-jun),Proto-Oncogene Products c-jun,Proto-Oncogene Proteins jun,jun Proto-Oncogene Product p39,p39 c-jun,Proto Oncogene Products c jun,Proto Oncogene Proteins c jun,Proto Oncogene Proteins jun,c fos Associated Protein p39,c jun Proteins,fos Associated Protein p39,jun Proto Oncogene Product p39,jun Proto Oncogene Proteins,p39 c jun
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos

Related Publications

L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
May 1992, Scandinavian journal of gastroenterology,
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
January 1988, Hepatology (Baltimore, Md.),
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
March 1991, The Journal of endocrinology,
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
July 1992, Journal of the Formosan Medical Association = Taiwan yi zhi,
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
September 1997, Digestive diseases and sciences,
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
June 2006, World journal of gastroenterology,
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
November 1995, Hepatology (Baltimore, Md.),
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
August 1996, Hepatology (Baltimore, Md.),
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
August 1963, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
L Lambotte, and A Saliez, and S Triest, and D Maiter, and A Baranski, and A Barker, and B Li
January 1963, Gastroenterologia,
Copied contents to your clipboard!