Programmed cell death (apoptosis) in cord blood lymphocytes. 1997

S Aggarwal, and A Gupta, and S Nagata, and S Gupta
Basic and Clinical Immunology, University of California, Irvine 92697, USA.

Cord blood lymphocytes are functionally immature and have deficient immune responses. In order to determine whether the process of programmed cell death is distinct between cord blood and peripheral blood lymphocytes, we analyzed the expression of fas and bax (apoptosis promoting genes) and bcl-2 and bcl-xL (apoptosis inhibiting genes) at protein or mRNA levels using flow cytometry and quantitative PCR methods, respectively. The susceptibility of T cell subsets from cord blood and adult peripheral blood to undergo apoptosis following restimulation with anti-CD3 or anti-Fas monoclonal antibodies was also studied. We observed that cord blood T cell subsets expressed lower levels of Fas and Bcl-2, a low bcl-2/bax ratio, and higher bcl-xL compared to peripheral blood. Additionally, upon primary stimulation with anti-CD3, cord blood T cell subsets were more resistant to apoptosis compared to peripheral blood. In contrast, rechallenge of previously stimulated lymphocytes with anti-CD3 monoclonal antibody triggered apoptosis in a larger proportion of T cells from cord blood as compared to peripheral blood, whereas the number of T cells undergoing anti-Fas-induced programmed cell death were lower in cord blood compared to peripheral blood.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016176 T-Lymphocyte Subsets A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells. T-Cell Subset,T-Cell Subsets,T-Lymphocyte Subset,Subset, T-Cell,Subset, T-Lymphocyte,Subsets, T-Cell,Subsets, T-Lymphocyte,T Cell Subset,T Cell Subsets,T Lymphocyte Subset,T Lymphocyte Subsets
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051028 bcl-2-Associated X Protein A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. Bax Protein,Bax-alpha Protein,Bax-omega Protein,Bax-sigma Protein,Bax Apoptosis Regulator Protein,Bax-beta Protein,Bax-delta Protein,bcl2-Associated X Protein,bcl2-Associated X Protein Isoform alpha,bcl2-Associated X Protein Isoform beta,bcl2-Associated X Protein Isoform delta,bcl2-Associated X Protein Isoform omega,bcl2-Associated X Protein Isoform sigma,Bax alpha Protein,Bax beta Protein,Bax delta Protein,Bax omega Protein,Bax sigma Protein,Protein, bcl-2-Associated X,X Protein, bcl-2-Associated,bcl 2 Associated X Protein,bcl2 Associated X Protein,bcl2 Associated X Protein Isoform alpha,bcl2 Associated X Protein Isoform beta,bcl2 Associated X Protein Isoform delta,bcl2 Associated X Protein Isoform omega,bcl2 Associated X Protein Isoform sigma

Related Publications

S Aggarwal, and A Gupta, and S Nagata, and S Gupta
February 1991, FEBS letters,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
December 2003, Arhiv za higijenu rada i toksikologiju,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
January 1996, Wiener klinische Wochenschrift,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
July 1998, Archives of surgery (Chicago, Ill. : 1960),
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
October 1999, Ugeskrift for laeger,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
May 1995, Casopis lekaru ceskych,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
July 1998, Therapeutische Umschau. Revue therapeutique,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
January 1994, Postepy higieny i medycyny doswiadczalnej,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
February 2004, Genetika,
S Aggarwal, and A Gupta, and S Nagata, and S Gupta
March 1991, Medicinal research reviews,
Copied contents to your clipboard!