Expression of polyphosphate kinase inhibits the glucose uptake in Escherichia coli. 1996

J K Liu, and M W Lu, and L T Yang, and C S Lin
Department of Biology, National Sun Yat-sen University, Taiwan, ROC.

This paper examines the effects of phosphate pool and expression of polyphosphate kinase on glucose uptake by expressing the polyphosphate kinase under the control of lac promoter. The E. coli transformant of pL1, containing an IPTG controllable element for polyphosphate kinase expression, showed that the total intracellular phosphate significantly increased. However, the rate of glucose uptake by the resting plasmid-bearing cells with IPTG induction significantly decreased. These findings suggest that the polyphosphate can not directly function as an energy source in E. coli or at least not as a good energy supplier.

UI MeSH Term Description Entries
D007544 Isopropyl Thiogalactoside A non-metabolizable galactose analog that induces expression of the LAC OPERON. IPTG,Isopropyl 1-Thio-beta-D-galactopyranoside,1-Thio-beta-D-galactopyranoside, Isopropyl,Isopropyl 1 Thio beta D galactopyranoside,Thiogalactoside, Isopropyl
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J K Liu, and M W Lu, and L T Yang, and C S Lin
December 1996, Proceedings of the National Academy of Sciences of the United States of America,
J K Liu, and M W Lu, and L T Yang, and C S Lin
June 2003, Biochemical and biophysical research communications,
J K Liu, and M W Lu, and L T Yang, and C S Lin
August 1998, Bioscience, biotechnology, and biochemistry,
J K Liu, and M W Lu, and L T Yang, and C S Lin
October 1997, Molecular microbiology,
J K Liu, and M W Lu, and L T Yang, and C S Lin
March 2018, Journal of bacteriology,
J K Liu, and M W Lu, and L T Yang, and C S Lin
January 1997, Proceedings of the National Academy of Sciences of the United States of America,
J K Liu, and M W Lu, and L T Yang, and C S Lin
November 1994, Annals of the New York Academy of Sciences,
J K Liu, and M W Lu, and L T Yang, and C S Lin
December 2000, Proceedings of the National Academy of Sciences of the United States of America,
J K Liu, and M W Lu, and L T Yang, and C S Lin
January 2016, Frontiers in microbiology,
J K Liu, and M W Lu, and L T Yang, and C S Lin
February 1972, FEBS letters,
Copied contents to your clipboard!