Problems with dimensionless measurement models of synchrony in biological systems. 1997

J C Schank
Center for the integrative Study of Animal Behavior, Indiana University, Bloomington 47405, USA.

Synchrony is surprisingly complex even in the simplest cases. One strategy for simplifying complex phenomena is to define a dimensionless measurement model with the aim of (1) finding order, (2) comparing complex phenomena, and (3) making decisions about statistical significance. However, a model is only as good as its assumptions. In this paper, several types of dimensionless measurement models of synchrony among biological states are evaluated using the preceding criteria. These dimensionless measurement models are found to be inadequate even in the simplest cases of N individuals cycling through k non-overlapping states. Moreover, independent of their adequacy as measures of synchrony, there is the additional problem of the applicability of biological-state measurement models to rhythmic biological processes. Biological states are often just quantized observations of the phases of rhythmic biological processes. With the help of a concrete example, it is shown that quantizing the phases of a process into discrete states can lead to serious errors. These conclusions do not imply that the study of synchrony in biological systems is intractable. There are statistical approaches for detecting synchrony in groups and researchers are making progress towards understanding the general mechanisms of rhythmic phenomena in biological systems.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological

Related Publications

J C Schank
January 1985, Advances in prostaglandin, thromboxane, and leukotriene research,
J C Schank
January 1988, Journal of mathematical biology,
J C Schank
January 2017, Advances in experimental medicine and biology,
J C Schank
January 1989, Reproductive toxicology (Elmsford, N.Y.),
J C Schank
February 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
J C Schank
May 2010, European biophysics journal : EBJ,
J C Schank
December 1973, Annals of biomedical engineering,
J C Schank
December 2001, The Behavioral and brain sciences,
Copied contents to your clipboard!