Size-dependent dextran transport across rat alveolar epithelial cell monolayers. 1997

Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
Department of Pharmaceutical Sciences, University of Southern California, Los Angeles 90033, USA.

The transport of dextrans (approximately 4 to approximately 150 kDa) across an in vitro model of the alveolar epithelial barrier was studied to determine the effects of molecular size on pulmonary absorption of macromolecular drugs. Fluorescein isothiocyanate (FITC)-labeled dextrans (FDs) with average molecular weights (all in kDa) of 3.86 (FD4), 9 (FD10), 19.8 (FD20), 40.5 (FD40), 71.6 (FD70), and 156.9 (FD150) were utilized as model macromolecular drugs. Unidirectional fluxes of FDs at 37 and 4 degrees C were measured from the appearance rates of FD in the receiver fluid of open-circuited monolayers (>2000 omega-cm2) of rat alveolar epithelial cells. Apparent permeability coefficients (P(app)) were estimated from the observed flux and the corresponding concentration gradient of FD. Results showed that FD fluxes were the same in both apical-to-basolateral (AB) and opposite (BA) directions at each molecular weight studied. The P(app) was not significantly different at 0.5 and 1.0 mg/mL FD40 donor concentrations. The FD P(app) (x 10(-8)cm/s) decreased gradually from 1.35 for FD4 to 0.32 for FD40, indicating an apparent inverse relationship between P(app) and molecular weight of FD. By contrast, P(app) was about the same at 0.13 for both FD70 and FD150. When experimental temperature was lowered to 4 degrees C, P(app) decreased by approximately 40% for FDs of 4 through 40 kDa, whereas the decrease in P(app) was by approximately 80% for larger FDs of both 70 and 150 kDa. Moreover, these FDs were found to be relatively intact (approximately 90%) in either receiver fluid after 5-h flux experiments without detectable levels of metabolites in the respective donor fluid, suggesting that alveolar epithelial cells allow translocation of FDs intact across the barrier. Equivalent pore analysis, assuming restricted diffusion of FDs of 4-40 kDa via cylindrical, water-filled pores across the cell monolayer revealed a population of large equivalent pores with approximately 5.6 nm radius. These data suggest that smaller macromolecules (radius <5 nm) traverse the alveolar epithelial barrier via paracellular pathways, and that larger (i.e., radius > or = 6 nm) macromolecules likely cross the barrier via other pathways (e.g., pinocytosis).

UI MeSH Term Description Entries
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016650 Fluorescein-5-isothiocyanate Fluorescent probe capable of being conjugated to tissue and proteins. It is used as a label in fluorescent antibody staining procedures as well as protein- and amino acid-binding techniques. FITC,5-Isothiocyanatofluorescein,Fluorescein (5 or 6)-Isothiocyanate,Fluorescein-5-isothiocyanate Hydrochloride,5 Isothiocyanatofluorescein,Fluorescein 5 isothiocyanate,Fluorescein 5 isothiocyanate Hydrochloride,Hydrochloride, Fluorescein-5-isothiocyanate

Related Publications

Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
November 1993, Pharmaceutical research,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
January 1994, Life sciences,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
April 2021, Membranes,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
April 2002, American journal of physiology. Lung cellular and molecular physiology,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
September 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
November 1994, Pharmaceutical research,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
August 2003, Pharmaceutical research,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
January 2011, International journal of nanomedicine,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
September 2007, Pharmaceutical research,
Y Matsukawa, and V H Lee, and E D Crandall, and K J Kim
September 1999, The Journal of endocrinology,
Copied contents to your clipboard!