Involvement of tyrosine phosphorylation in endothelin-1-induced calcium-sensitization in rat small mesenteric arteries. 1997

J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
Department of Medicine, Manchester Royal Infirmary.

1. We have studied the effect of endothelin-1 stimulation on protein tyrosine phosphorylation levels in intact small mesenteric arteries of the rat and investigated the effects of tyrosine kinase inhibition on the contractile response to this agonist. 2. Endothelin-1 stimulated a rapid (20 s), sustained (up to 20 min) and concentration-dependent (1-100 nM) increase in protein tyrosine phosphorylation levels which coincided temporally with the contractile response in intact and alpha-toxin permeabilized small artery preparations. Tyrosine phosphorylation was increased in four main clusters of proteins of apparent molecular mass 28-33, 56-61, 75-85 and 105-115 kDa. Endothelin-1-induced protein tyrosine phosphorylation was independent of extracellular calcium, antagonized by the tyrosine kinase inhibitor tyrphostin A23 but not by the inactive tyrphostin A1. 3. In intact small arteries tyrphostin A23 inhibited the force developed to endothelin-1 at all concentrations studied; at higher concentrations (10 and 100 nM) the profile of contraction was altered from a sustained to a transient response. Tyrphostin A1 inhibited the contractile response to endothelin-1 at all concentrations except 100 nM; the profile of the response was not altered. Neither tyrphostin affected the transient phasic contraction induced by endothelin-1 (100 nM) in the absence of extracellular calcium. 4. In rat alpha-toxin permeabilized mesenteric arteries endothelin-1 caused a concentration-dependent increase in force in the presence of 10 microM GTP and low (pCa 6.7) constant calcium, demonstrating increased sensitivity of the contractile apparatus to calcium. Tyrphostin A23 inhibited this response by approximately 50%, tyrphostin A1 did not affect endothelin-1-induced calcium sensitization of force. 5. We conclude that increased tyrosine phosphorylation is important in the contractile response induced by endothelin-1 in intact small mesenteric arteries. Furthermore our data implicate activation of this signalling pathway in the tonic phase of contraction possibly through modulation of the sensitivity of the contractile apparatus to calcium.

UI MeSH Term Description Entries
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002396 Catechols A group of 1,2-benzenediols that contain the general formula R-C6H5O2. Pyrocatechols,o-Dihydroxybenzenes,ortho-Dihydroxybenzenes,o Dihydroxybenzenes,ortho Dihydroxybenzenes
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
February 2010, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
December 1997, European journal of pharmacology,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
January 2016, The Journal of pharmacology and experimental therapeutics,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
January 1998, Journal of vascular research,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
May 2004, Acta physiologica Scandinavica,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
May 1996, The Journal of physiology,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
July 1998, The Journal of physiology,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
February 1998, Circulation research,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
March 1989, Biochemical and biophysical research communications,
J Ohanian, and V Ohanian, and L Shaw, and C Bruce, and A M Heagerty
April 2006, Experimental biology and medicine (Maywood, N.J.),
Copied contents to your clipboard!