Defective depletion of CD45-null thymocytes by the Staphylococcus aureus enterotoxin B superantigen. 1996

L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
Department of Immunology, The Babraham Institute, Cambridge, UK.

The development of a normal T-cell repertoire is critically dependent on the negative and positive selection events which occur at the CD4+CD8+ (double positive, DP) stage of thymic development. Depending on the avidity of the T-cell antigen receptor (TCR) for peptides presented within the thymus, DP thymocytes are either positively selected for maturation to CD4+/CD8+ single positive cells or are depleted by apoptosis. The addition of superantigen to thymocytes within foetal thymic organ culture (FTOC) mimics the negative selection signal of potentially autoreactive thymocytes and induces the responding population of thymocytes to apoptose. Here we present evidence that the transmembrane phosphotyrosine phosphatase CD45 critically regulates TCR-induced signals in thymic differentiation and present data to show defective depletion of CD45-null transgenic TCR-Vbeta8 DP thymocytes in FTOC by the Staphylococcus aureus Enterotoxin B (SEB) superantigen.

UI MeSH Term Description Entries
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors
D017493 Leukocyte Common Antigens High-molecular weight glycoproteins uniquely expressed on the surface of LEUKOCYTES and their hemopoietic progenitors. They contain two FIBRONECTIN TYPE III DOMAINS and possess cytoplasmic protein tyrosine phosphatase activity, which plays a role in intracellular signaling from the CELL SURFACE RECEPTORS. Leukocyte common antigens occur as multiple isoforms that result from alternative mRNA splicing and differential usage of three exons. Antigens, CD45,CD45 Antigens,CD45R Antigens,CD45RA Antigens,CD45RO Antigens,Protein Tyrosine Phosphatase, Receptor Type, C,2H4 Antigens,B220 Antigen,B220 Antigens,CD45 Antigen,CD45R0 Antigens,CD45RB Antigens,CD45RCAntigens,L-CA Antigens,Leukocyte Common Antigen,T200 Antigens,Antigen, B220,Antigen, CD45,Antigen, Leukocyte Common,Antigens, 2H4,Antigens, B220,Antigens, CD45R,Antigens, CD45R0,Antigens, CD45RA,Antigens, CD45RB,Antigens, CD45RO,Antigens, L-CA,Antigens, Leukocyte Common,Antigens, T200,L CA Antigens
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018089 Superantigens Microbial antigens that have in common an extremely potent activating effect on T-cells that bear a specific variable region. Superantigens cross-link the variable region with class II MHC proteins regardless of the peptide binding in the T-cell receptor's pocket. The result is a transient expansion and subsequent death and anergy of the T-cells with the appropriate variable regions. Superantigen

Related Publications

L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
November 2023, Journal of immunology (Baltimore, Md. : 1950),
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
January 1993, Immunodeficiency,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
January 2002, The Journal of biological chemistry,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
May 1995, The Journal of biological chemistry,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
January 2000, Microbiology and immunology,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
February 1976, Canadian journal of microbiology,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
October 1968, Journal of bacteriology,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
May 1998, Infection and immunity,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
January 1972, Biochimica et biophysica acta,
L A Conroy, and K F Byth, and S Howlett, and N Holmes, and D R Alexander
November 1998, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!