Spontaneous DNA damage stimulates topoisomerase II-mediated DNA cleavage. 1997

P S Kingma, and N Osheroff
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.

Apurinic sites are position-specific poisons of topoisomerase II and stimulate DNA scission approximately 10-18-fold when they are located within the 4-base overhang generated by enzyme-mediated cleavage (Kingma, P. S., and Osheroff, N. (1997) J. Biol. Chem. 272, 1148-1155). To determine whether other major forms of spontaneous DNA damage also act as topoisomerase II poisons, the effects of position-specific apyrimidinic sites and deaminated cytosines (i.e. uracil:guanine mismatches) on the type II enzyme were determined. Both of these lesions stimulated topoisomerase II-mediated DNA scission with the same positional specificity as apurinic sites but were less efficacious. Moreover, apurinic sites dominated the effects of apyrimidinic sites in substrates that contained multiple lesions. The differential ability of spontaneous lesions to enhance DNA cleavage did not correlate with either a decreased stability of the double helix or the size of the gap formed by base loss. Rather, it appears to be due (at least in part) to increased rates of religation for substrates containing apyrimidinic sites or deaminated cytosines. These results suggest that several forms of spontaneous DNA damage are capable of acting as endogenous poisons of topoisomerase II.

UI MeSH Term Description Entries
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P S Kingma, and N Osheroff
January 2001, Methods in molecular biology (Clifton, N.J.),
P S Kingma, and N Osheroff
February 1991, Plant physiology,
P S Kingma, and N Osheroff
November 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
P S Kingma, and N Osheroff
April 2003, Proceedings of the National Academy of Sciences of the United States of America,
P S Kingma, and N Osheroff
October 1984, Science (New York, N.Y.),
P S Kingma, and N Osheroff
August 1995, Biochemical and biophysical research communications,
P S Kingma, and N Osheroff
August 1990, The Journal of biological chemistry,
P S Kingma, and N Osheroff
May 2005, Chemico-biological interactions,
Copied contents to your clipboard!