Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects. 1997

W E Glaab, and K R Tindall
Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599, USA.

Spontaneous mutation rates at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus were measured in human cancer cell lines defective in the mismatch repair (MMR) genes hMLH1, hPMS2, or GTBP, as well as in a cell line carrying mutations in both hMLH1 and hPMS2. The mutation rate was determined by quantitating mutant frequency increases within a single culture as a function of cell division. These MMR-deficient cell lines exhibited a 50- to 750-fold increase in mutation rate relative to a MMR-proficient cancer cell line. From lowest to highest, the spontaneous mutation rates relative to the MMR-gene defects studied here are as follows: hMLH1- < GTBP- < hPMS2- < hMLH1- / hPMS2-. In addition, a cell line in which MMR was restored by chromosome transfer exhibited a mutation rate 12-fold below the MMR-deficient parental cell line. These data support the notion that MMR plays an important role in controlling the rate of spontaneous mutation and suggest that different MMR-gene defects may vary in their ability to repair different types of DNA mismatches, thus leading to measurable quantitative differences in spontaneous mutagenesis. Furthermore, a difference in mutation rates was observed between a hPMS2-defective cell line (3.1 x 10(-5) mutations/cell/generation) and two hMLH1-defective cell lines (4.0 x 10(-6) and 7.3 x 10(-6) mutations/cell/generation). Assuming the hPMS2- and hMLH1-gene products only function in the proposed hMutL alpha heterodimer, then defects in either gene should yield comparable mutation rates. These data suggest that hPMS2 plays a critical role in MMR, while additional hMLH1 homologues or hPMS2 alone may function to partially complement defects in hMLH1.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

W E Glaab, and K R Tindall
September 1993, Trends in genetics : TIG,
W E Glaab, and K R Tindall
January 1990, Acta physiologica Scandinavica. Supplementum,
W E Glaab, and K R Tindall
December 1995, Toxicology letters,
W E Glaab, and K R Tindall
January 1990, Environmental and molecular mutagenesis,
W E Glaab, and K R Tindall
September 2002, Human molecular genetics,
Copied contents to your clipboard!