The potential of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide to circumvent three multidrug-resistance phenotypes in vitro. 1997

R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
Bill Walsh Cancer Research Laboratories, Clinical Oncology Department, Royal North Shore Hospital, St. Leonards, Australia.

The effectiveness of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) relative to that of amsacrine, idarubicin, daunorubicin and paclitaxel against three different forms of multidrug resistance (MDR) was determined using two sublines of the CCRF-CEM human leukaemia cell line, the P-glyco-protein-expressing CEM/VLB100 subline and the MRP-expressing CEM/E1000 subline, and two extended-MDR sublines of the HL60 human leukaemia cell line, HL60/E8 and HL60/V8. DACA was effective against P-glycoprotein-mediated MDR and MRP-mediated MDR, whereas the extended-MDR phenotype showed only low levels of resistance (< 2-fold) to DACA. In comparison, idarubicin was ineffective against the MRP and extended-MDR phenotypes. Repeated exposure of the K562 human leukaemia cell line to DACA (55, 546 or 1092 nM for 3 days over 10 weeks) did not result in the development of any significant drug resistance. We conclude that DACA has the potential to treat refractory leukaemia.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000166 Acridines Compounds that include the structure of acridine. Acridine
D000677 Amsacrine An aminoacridine derivative that intercalates into DNA and is used as an antineoplastic agent. m-AMSA,AMSA,AMSA P-D,Amsacrina,Amsidine,Amsidyl,Cain's Acridine,NSC-141549,NSC-156303,NSC-249992,SN-11841,SN11841,meta-AMSA,AMSA P D,AMSA PD,Cain Acridine,Cains Acridine,NSC 141549,NSC 156303,NSC 249992,NSC141549,NSC156303,NSC249992,SN 11841,meta AMSA
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
January 1993, Cancer chemotherapy and pharmacology,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
June 1999, Anti-cancer drug design,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
January 1995, Cancer chemotherapy and pharmacology,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
January 1999, Cancer chemotherapy and pharmacology,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
January 1999, Cancer chemotherapy and pharmacology,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
January 1993, Cancer chemotherapy and pharmacology,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
December 2001, Anti-cancer drug design,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
April 1987, Journal of medicinal chemistry,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
March 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
R A Davey, and G M Su, and R M Hargrave, and R M Harvie, and B C Baguley, and M W Davey
April 1996, European journal of cancer (Oxford, England : 1990),
Copied contents to your clipboard!